Путенихин Петр Васильевич : другие произведения.

Просто про С Т О

Самиздат: [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь|Техвопросы]
Ссылки:
Школа кожевенного мастерства: сумки, ремни своими руками
 Ваша оценка:
  • Аннотация:
    Рассмотрены положения и выводы специальной теории относительности, СТО на примере парадокса близнецов. Считается, что парадокс в рамках СТО не имеет решения, а окончательное решение он получил в общей теории относительности, ОТО. Показано, что, наоборот, парадокс имеет несколько непротиворечивых, взаимоисключающих решений именно в СТО, причём с соблюдением всех её положений, в том числе, принципа относительности. Рассмотрено парадоксальное решение - при встрече оба близнеца имеют одинаковый возраст. Найти непротиворечивое решение парадокса близнецов в общей теории относительности не удалось: решение имеет неприемлемо высокую погрешность.
    The article "Simple about SRT". The provisions and conclusions of the special theory of relativity, SRT are considered on the example of the twin paradox. It is believed that the paradox in the framework of SRT has no solution, and it received the final solution in the general theory of relativity, GR. It is shown that, on the contrary, the paradox has several non-contradictory, mutually exclusive solutions in SRT, moreover, in compliance with all its provisions, including the principle of relativity. A paradoxical solution is considered - at the meeting, both twins have the same age. It was not possible to find a consistent solution to the twin paradox in the general theory of relativity: the solution has an unacceptably high error. Continuation of the article, chapter 5 added.


  Путенихин, Петр Васильевич.
  Просто про СТО / П.В.Путенихин. -
  Саратов: ООО "АМИРИТ", 2023. - 310 с., цв. илл.
  ISBN 978-5-00207-215-6
  
  

Оглавление

   Предисловие
   1. Решение классического парадокса близнецов
   2. Альтернативное решение парадокса - два поезда
   3. Парадоксальное решение парадокса близнецов
   4. Загадочная математика
   5. Парадокс близнецов в ОТО
        Повторные вычисления первого варианта
        Три члена разложения Тейлора
        Выводы
   6. Парадокс Эренфеста
        Описание парадокса
        Первичное решение парадокса
        Варианты вращения
        Анализ рецензии на статью
        Обсуждение с читателем
        Выводы
   7. Истоки возникновения эффектов СТО
   8. Противоречивые мнения в науке
        Медленное перемещение - часы отстанут
        Проблема притяжения тела внутри сферы
        Радиус наблюдаемой Вселенной
        Неравенства Белла и квантовая нелокальность
        Противоречия принципа реинтерпретации
        Бесконечные ряды и Вселенная
        Задача Гамова о поиске пиратского клада
        Проблема пятого постулата Евклида
        Противоречия параллельного переноса
        Сингулярность Черной дыры
        Черные дыры не испаряются?
        Информационный парадокс
        Заключение
   Приложения
   П1. Исходное решение - два члена ряда Тейлора
   П2. Уточнённое решение - три члена ряда Тейлора
   П3. Релятивистский интервал как источник
   П4. Решение парадокса Эренфеста
        Миф о парадоксе Эренфеста
        Варианты вращения
        Обычный (хрупкий) материал.
        Абсолютно эластичный материал.
        Абсолютно твердый материал.
        Почему √2/2?
        Парадокс поезда Эйнштейна
        Изгибающий эффект Лоренца
        Предельный случай
        Выводы
   П5. Горизонты видимости Вселенной
        Уравнение движения
        Парадокс ускоренного расширения
        Три разные удалённости
        Путаница с расширением...
        Горизонт видимости
   П6. Сверхсветовой квантовый семафор
   Ссылки
  
   В настоящий момент, 08.04.2023, обязательные экземпляры книги для Книжной палаты находятся в издательстве. Отправлены в Книжную палату они будут приблизительно в мае 2023 года. Данная статья, с одной стороны, является ознакомительным фрагментом книги, а с другой стороны - файлом, содержащим анимации, упомянутые в тексте книги. Полный текст книги находится во вложении к этому фрагменту по адресам:
   http://samlib.ru/img/p/putenihin_p_w/prosto/prosto442.pdf
   http://lit.lib.ru/img/p/putenihin_p_w/prosto/prosto442.pdf
   Адрес данного фрагмента:
   http://samlib.ru/p/putenihin_p_w/prosto.shtml
   http://lit.lib.ru/p/putenihin_p_w/prosto.shtml
   Для сохранения структуры оглавления в этом фрагменте представлены урезанные главы, в которых оставлен лишь первый абзац или его часть.

Предисловие

   Для того чтобы понять, как устроен окружающий мир, человечество за время своего существования выработало множество наук и научных теорий. Среди них одно из важнейших мест занимают физика и её теории. Практически все технологические достижения человечества в той или иной степени опираются на законы физики, обычно именуемые также законами природы. Среди этих физических теорий в настоящее время ведущими являются квантовая теория и теория относительности. Теория относительности - это, по сути, две теории - специальная теория относительности, СТО и общая теория относительности, ОТО, известная также как теория гравитации. Если внимательно присмотреться, то можно обнаружить, что, несмотря на физический статус, СТО - это фактически просто математическая теорема, хотя и весьма оригинальная.

1. Решение классического парадокса близнецов

   Повторим: классическим мы называем парадокс близнецов в формулировке, производной от выкладок, приведённых в работе Эйнштейна от 1905 года. Строго говоря, эта формулировка не имеет признаков парадокса теории, поскольку, во-первых, она сама изначально противоречит положениям своей теории, то есть, по сути, не принадлежит ей, и, во-вторых, собственно противоречия, альтернативных доказательств в ней нет. Строго согласно положениям теории, действительно, движущиеся часы отстанут от неподвижных часов.

2. Альтернативное решение парадокса - два поезда

   Выше мы заявили, что парадокс близнецов имеет несколько корректных, но, взаимоисключающих решений. Первое решение, в котором по возвращении на Землю отстают часы звездолёта, мы рассмотрели. Теперь рассмотрим второй, альтернативный вариант, когда в момент повторной встречи отставшими будут часы Земли.

3. Парадоксальное решение парадокса близнецов

   Как мы заявили, математическая теория СТО корректна, и её невозможно опровергнуть никакими математическими мысленными экспериментами. Единственное "недоумение" может вызвать только реальность, физичность этих эффектов. Следует напомнить, что на самом деле никакие часы физически не замедляются, не идут медленнее, никакие отрезки физически не укорачиваются, о чем, вообще-то, говорится и в самой теории.

4. Загадочная математика

   Итак, в первых трёх главах мы получили три взаимоисключающих решения. Действительно, как могло получиться, что в одном случае при встрече близнецов моложе оказался путешественников, во втором - тот, что был неподвижен, домосед, а в третьем они вообще оказались ровесниками? В этой связи уместно вспомнить притчу о спорщиках и Ходже Насреддине.

5. Парадокс близнецов в ОТО

   Парадокс близнецов, напомним, является одной из старейших задач, сформулированных в специальной теории относительности и названных автором, Эйнштейном "своеобразным следствием" теории или теоремой. Согласно положениям теории, её фундаментальному принципу относительности, это следствие, задача в дальнейшем была представлена в виде парадокса.

 []

Картина с точки зрения близнеца A на Земле

 []
Картина с точки зрения близнеца B на космическом корабле

Анимация []
Рис.5.1. Диаграмма Минковского - наглядная демонстрация принципа эквивалентности общей теории относительности на примере решения "парадокса близнецов". Картина с точки зрения близнеца B на космическом корабле.

Повторные вычисления первого варианта

   Использованный нами метод табличного интегрирования при решении задачи является довольно громоздким, содержит объёмные таблицы. Для повторного решения этой же задачи с более точным значением гравитационного слагаемого в уравнении Лоренца мы воспользуемся более компактным способом интегрирования - численным интегрированием.

Три члена разложения Тейлора

   Понятно, что это новое решение будет так же предельно компромиссным. Как мы предположили ранее, погрешность нашего решения в статье "Итак, парадокса (близнецов) больше нет" связана с использованием приближённого гравитационного уравнения Лоренца, приближённого значения гравитационного слагаемого в нём.

Выводы

   Утверждение о том, что в общей теории относительности парадокс близнецов получил полное и окончательное решение, является недостаточно обоснованным. В рассмотренной предельно идеализированной версии парадокса - путешественник всё время движется с неизменным ускорением - точность нескольких численных вариантов решений не превышает единиц процента, что для аналитических вычислений является неприемлемым, особенно для теории, ОТО, славящейся своими беспрецедентно точными вычислениями.

6. Парадокс Эренфеста

   Парадокс Эренфеста можно назвать компиляцией трёх мифов: применение СТО к нелинейному движению, существование абсолютно твёрдого тела и невозможность раскрутить цилиндр, привести его во вращение из состояния покоя. Как мы обнаружили в предыдущих главах, традиционное предсказание о времени путешественника в парадоксе близнецов оказалось ошибочным, вернее, таких условно непротиворечивых предсказаний три, но верным, полностью корректным является лишь третье, в котором близнецы при встрече будут ровесниками.

Описание парадокса

   Изначально, впервые этот парадокс был сформулирован в краткой заметке Эренфеста, которая заканчивалась утверждением, что согласно специальной теории относительности приведённый во вращение цилиндр обязан иметь одновременно два различающихся радиуса.

Первичное решение парадокса

   Однако, повторим, речь в парадоксе чаще всего идёт либо о сплошном круге, либо о колесе со спицами, следовательно, физические радиусы в этом случае присутствуют в том или ином виде. И этот физический радиус, длина спиц или радиальная длина сплошного диска точно так же укорачиваются в соответствии с классическим уравнением Лоренца для сокращения длин.

Варианты вращения

   Диск из обычного, хрупкого материала. В нём внутренние слои испытывают деформацию сжатия, а внешние - растяжения. Следовательно, более вероятен разрыв внешних ободов, чем упругое уменьшение объёма внутренних слоёв.

Анализ рецензии на статью

   После нахождения рассмотренного непротиворечивого решения мнимого парадокса Эренфеста, в один из журналов была направлена статья, озаглавленная "Парадокс Эренфеста не является парадоксом специальной теории относительности".

Обсуждение с читателем

   Помимо рецензии из журнала, мы получили ещё целый ряд замечаний в комментариях к статье на сайте Самиздата от одного из читателей, которого здесь будем называть оппонентом.

Выводы

   Сначала повторим, что все обнаруженные в статье явления и эффекты - это результаты анализа мысленных экспериментов строго в рамках математики специальной теории относительности.

7. Истоки возникновения эффектов СТО

   В некоторых научно популярных фильмах приводится иллюстрация, демонстрация того, как видят неподвижный и движущийся наблюдатель один и тот же фотон. Иллюстрацию мы приводим в упрощённом виде на рисунке рис.7.1. Один из наблюдателей перемещается справа налево в автомобиле, который мы изобразили в виде упомянутой выше тележки.

8. Противоречивые мнения в науке

   Мы рассматривали специальную теорию относительности, и, казалось бы, обнаруженные противоречия являются частным, нехарактерным примером для физики и математики в целом. Но это не так. Противоречий, абсурдов, подобных рассмотренным, в них немало.

Медленное перемещение - часы отстанут

   Существует довольно любопытное заблуждение: если двое часов сближаются с очень медленной скоростью, то их взаимное отставание будет минимальным, меньше, чем при сближении с субсветовой или даже световой скоростью. Как считает Скобельцын:

Проблема притяжения тела внутри сферы

   Мы рассмотрели примеры некорректного, ошибочного применения положений специальной теории относительности. Подобные отклонения от положений теории можно найти и при использовании общей теории относительности, в теории гравитации. Следующий пример рассматривает гравитационное явление, поэтому его можно отнести именно к этой теории.

Радиус наблюдаемой Вселенной

   Предыдущие примеры отклонений от формализма теории относительности можно назвать мелочью, простым недоразумением, вызванным невнимательностью исследователей. На любые последующие выкладки и выводы они не оказывают практически никакого серьёзного влияния.

Неравенства Белла и квантовая нелокальность

   Противоречия в специальной теории относительности, которые мы обнаружили выше, относятся к математической теории относительности, которая верна и непротиворечива по определению. То есть, все эти противоречия - кажущиеся, вызванные некорректным применением положений теории.

Противоречия принципа реинтерпретации

   Буквально с момента публикации основ СТО, специальной теории относительности стали появляться и её активные критики, которые раз за разом создавали для неё проблемы в виде мысленных экспериментов. Следует уточнить, что и сама теории в лице её автора приняла в этом участие, поскольку самый первый парадокс создала именно она - парадокс близнецов. Убеждённые сторонники теории столь же активно противостояли всем этим проблемам.

Бесконечные ряды и Вселенная

   Специальную теорию относительности мы назвали математической теорией. Поэтому ей присущи те же проблемы, что и любой другой математической теории или гипотезе. Вместе с тем, сама математика - это наука предельно точная. Поэтому неверными, ошибочными могут быть только выводы, умозаключения математиков.

Задача Гамова о поиске пиратского клада

   Следует отметить, что к противоречиям ведут не только манипуляции с бесконечностями и способами их пересчёта. Одной из причин ошибочных выводов является неверная трактовка формализма используемой теории и даже базовых положений самой математики. Как правило, учебные задачи в математике формируются в виде небольших историй, рассказов.

Проблема пятого постулата Евклида

   Ещё одна фундаментальная математическая проблема, ничуть не уступающая по сложности проблемам специальной теории относительности и проблемам пересчёта элементов бесконечных множеств - это проблема пятого постулата, пятой аксиомы Евклида. На протяжении двух тысячелетий эту проблему не смог решить ни один математик.

Противоречия параллельного переноса

   Следует отметить, что как в специальной теории относительности, так и в других математических теоремах одной из проблем, ведущих к неверным выводам, является простая подмена понятий, изменение смысла некоторого важного понятия.

Сингулярность Черной дыры

   Одним из самых удивительных и загадочных физических объектов в общей теории относительности является сингулярность. Однако её реальное существование до сих пор ставится под сомнение.
  
   При достижении гравитационного предела, звезда становится "невидимой". Следовательно, поверхность звезды однозначно должна быть под горизонтом. Если перед началом коллапса звезда имела существенно больший размер, чем шар с гравитационным радиусом, радиусом горизонта событий, то сжатие вещества звезды происходит эволюционно, плавно. И напротив, если радиус звезды перед самым началом коллапса меньше гравитационного, то нет никаких веских оснований утверждать, что звезда вдруг резко, почти мгновенно уменьшила свой радиус. Резонно считать, что в момент коллапса радиус звезды и её гравитационный радиус тождественно равны.

 []

Черные дыры не испаряются?

   Следует признать, что неверные трактовки положений специальной теории относительности, допускаемые практически всеми учёными и подвергнутые критике в нашей работе, уникальными не являются. В основу специальной теории относительности, СТО положен довольно простой и доступный воображению и пониманию принципы - инвариантность скорости света и равноправие всех инерциальных систем. Все парадоксы возникают в результате либо откровенного, либо неявного нарушения этих принципов.

Информационный парадокс

   Здесь мы можем, наконец, пояснить то самое противоречие, которое придирчивый читатель мог обнаружить в наших рассуждениях в первых трёх главах. В самом деле, мы регулярно и настойчиво заявляли, что специальная теория относительности является строго доказанной математической теоремой. Эта теорема непротиворечива, и её невозможно опровергнуть никакими математическими мысленными экспериментами.

Заключение

   Сначала отметим, что все обнаруженные в данной работе явления и эффекты, в том числе, имеющие признаки парадокса - это результаты анализа мысленных экспериментов строго в рамках математической специальной теории относительности. Специальная теория относительности является строго доказанной математической теоремой, поэтому никакими математическими средствами она не может быть опровергнута. Обнаруженные в квантовой механике проблемы со вторым постулатом об инвариантности скорости света нельзя рассматривать как опровержение СТО.

П1. Исходное решение - два члена ряда Тейлора

   В исходном ОТО-решении парадокса близнецов было использовано уравнение Лоренца с гравитационным членом, которое предложил Скобельцын

П2. Уточнённое решение - три члена ряда Тейлора

   Для следующего, более точного ОТО-решения парадокса близнецов было сформулировано новое гравитационное уравнение Лоренца

П3. Релятивистский интервал как источник

   Главным источником всех решений парадокса близнецов в рамках общей теории относительности можно назвать релятивистский интервал, вернее, его квадрат. Использованные нами уравнения для вычисления времени путешественника считаются довольно простыми.

П4. Решение парадокса Эренфеста

   Основное "назначение" множества парадоксов СТО - это показать внутренние противоречия теории. Если теория делает предсказания о каком-либо явлении, которые противоречат друг другу, то это свидетельствует об ошибочности теории, что требует её пересмотра. Парадоксы СТО выводятся из мысленных экспериментов, то есть, воображаемого эксперимента на основе положений теории.

Миф о парадоксе Эренфеста

   Рассмотрим по возможности современные версии парадокса, указанные в начале главы. Простейшей и, видимо, самой распространенной, является версия "парадокс колеса", которая, как можно заметить, в наибольшей степени совпадает моделью, сформулированной Эренфестом. По сути, парадокс Эренфеста и является тождественно парадоксом колеса.
  
   Обод колеса, видимый как транспортерная лента, как и в задаче о транспортере будет сокращаться, что неизбежно приведёт либо к его разрыву, либо к деформации оси, которая под выбранным углом выглядит как станина транспортера.

 []

   Рис.4.2. Если смотреть на колесо под большим углом, оно выглядит как эллипс. Окружность из утолщенной линии - это внешняя поверхность оси колеса. Окружность из тонкой линии - вращающийся обод (колесо). Анимация, вид колеса под разными углами
  
   Если на диск нанести равномерно концентрические окружности, через равные интервалы, то в процессе его раскручивания для внешнего наблюдателя эти окружности будут располагаться с интервалами, равномерно уменьшающимися от центра (практически исходная величина интервала) к периферии (уменьшающийся вплоть до нуля).

 []

   Рис.4.4. Лоренцева деформация конуса при раскручивании. a) вид правой половины конуса вдоль оси; b) анимация, соответствующие виду конуса "с ребра" при различных скоростях вращения

Варианты вращения

Обычный (хрупкий) материал.

   Для обычного материала при взаимодействии слоёв-ободов внутренние слои испытывают деформацию сжатия, а внешние - растяжения. Следовательно, более вероятен разрыв внешних ободов, чем упругое уменьшение объёма внутренних.
  
   На рисунке в красный цвет перекрашены слои (ободы), которые приходят в тесное соприкосновение, с силой давят друг на друга. В этом случае их материал испытывает как усилие на сжатие (внутренние слои), так и усилие на растяжение (внешние слои). При некоторых усилиях внешние слои, что более вероятно, просто будут разорваны, и разлетятся в разные стороны. Как видно на рисунке, условия для разрыва наступают после достижения предельной скорости 0,7с.

 []

Рис.4.5. Деформация диска из твердого материала

  

Абсолютно эластичный материал.

   Для такого материала картина немного иная. Разрыв слоёв невозможен, но возможно их бесконечное сжатие. Следовательно, при скорости внешнего обода, близкой к скорости света, для внешнего наблюдателя колесо может превратиться в бесконечно малую точку. Это в том случае, если на сжатие будет необходимо меньшее усилие, чем на растяжение.

 []

   Рис.4.6. Лоренцева деформация диска из эластичного материала. Анимация вида диска "с ребра" для разных скоростей вращения
  

Абсолютно твердый материал.

   Для абсолютно твердого материала колеса, который не сжимается, не растягивается и не изгибается, картина также будет отличаться от предыдущих. Внешние ободы не могут разорваться, а внутренние - сжаться. Поэтому, разрушения ни тех, ни других не будет, но будет стремительно возрастать сила их давления друг на друга после того, как будет достигнута предельная скорость вращения.

 []

   Рис.4.7. Лоренцева деформация диска из абсолютно твердого материала. Анимация, вид диска "с ребра" при различных скоростях его вращения

Почему √2/2?

   Представленные вычисления показали, что величина скорости внешнего обода, при которой начинается его деформация, то есть давление слоёв друг на друга, имеет довольно странное значение - -2/2. Сразу же мы задались вопросом: почему именно 0,7? Откуда, из каких физических особенностей колеса возникает это число?

Парадокс поезда Эйнштейна

   Напомним, что в оригинальной, исходной формулировке парадокса Эренфеста речь шла не о колесе и спицах, а о сплошном цилиндре. Однако, это не единственный вариант формулировки парадокса. Есть менее известный вариант в виде "поезда Эйнштейна".

Изгибающий эффект Лоренца

   Помимо обнаруженного подобия поперечного эффекта Лоренца можно наблюдать еще более интересный - косвенный изгибающий эффект Лоренца, когда помимо сокращения длины движущегося тела происходит его релятивистский изгиб.

Предельный случай

   Мы рассматривали задачу о парадоксе Эренфеста, максимально следуя формализму специальной теории относительности, в частности, двум её постулатам. Однако есть ещё одно "решение", которое также непосредственно следует из формализма теории.

Выводы

   Итак, подведём итоги. Как видим, поведение раскручиваемого колеса имеет строго согласованные и непротиворечивые предсказания в специальной теории относительности для всех вариантов парадокса колеса. Сначала отметим, что все обнаруженные в статье явления и эффекты - это результаты анализа мысленных экспериментов строго в рамках математики специальной теории относительности.

П5. Горизонты видимости Вселенной

   Нередко в литературе или в образовательных фильмах звучит вопрос: чему равны размеры наблюдаемой Вселенной, чему равен так называемый радиус наблюдаемой Вселенной. То есть, как далеко находятся от нас самые дальние объекты в ней, которые мы видим. Ответ на этот вопрос на самом деле простым не является.

Уравнение движения

   Связано это с тем, как мы отметили, что конечная дистанция растёт как перед фотоном, так и позади него. Физически это выглядит так, будто фотон прошёл эту дистанцию со скоростью, превышающей скорость света. Впервые описание этого явления мы встретили у Голованова и исследовали его в нашей работе "Радиус наблюдаемой Вселенной и горизонт Вселенной".

Парадокс ускоренного расширения

   Выше мы отметили, что расхождение в величине предельной удалённости связано с разницей характера и значений параметра Хаббла. Астрономические наблюдения, как считается, соответствуют ускоренному расширению и возрастающему значению параметра. А вычисленный нами предел - неизменному, современному значению параметр. Но вот что интересно. Открытие ускоренного расширения научная общественность восприняла с удивлением, но доброжелательно. Однако при его даже поверхностном анализе возникает сомнение: что-то в этом выводе не так.

Три разные удалённости

   Вывод о замедленном расширении Вселенной в наших рассуждениях самоцелью не являлся, возник он случайно и совершенно неожиданно. Поэтому просто отложим его и вернёмся к нашим исследованиям наблюдаемой дальности, видимости Вселенной. Можно отметить, что у любой наблюдаемой галактики фактически есть три разные удалённости. Условно говоря, галактика как бы находится в трёх местах одновременно.

Путаница с расширением...

   Заметим, что иные, кардинально отличающиеся цифры о размерах наблюдаемой Вселенной найти не удалось. Более того, первая встретившаяся нам работа, в которой дана ссылка на единственный источник, первоисточник, статью "Expanding Confusion..." (в переводе - "Путаница с расширением..."), в которой описано появление этой удалённости в 46 млрд. св. лет - это раздел "Метагалактика" на сайте Википедия.

Горизонт видимости

   Горизонтом видимости Вселенной (в литературе - горизонт событий) следует считать исходное, в начальный момент расширения расстояние до самой дальней галактики, которую мы можем наблюдать в принципе, пусть даже и через бесконечно большое время.

П6. Сверхсветовой квантовый семафор

   Можно назвать общепризнанным мнением, что окончательным и бесповоротным опровержением специальной теории относительности может быть только возможность передачи классической информации со скоростью, превышающей скорость света. Также считается, что до настоящего времени ни теоретических, ни практических достижений в этом направлении нет.

Ссылки

Ссылки на работы автора

14.03.2023

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 Ваша оценка:

Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
О.Болдырева "Крадуш. Чужие души" М.Николаев "Вторжение на Землю"

Как попасть в этoт список

Кожевенное мастерство | Сайт "Художники" | Доска об'явлений "Книги"