До и после Победы. Книга 1. Начало. Часть 3
Самиздат:
[Регистрация]
[Найти]
[Рейтинги]
[Обсуждения]
[Новинки]
[Обзоры]
[Помощь|Техвопросы]
|
|
|
Аннотация: Оставшаяся часть экс-главы 17 - танкоремонт, прокат, литейка, азотная кислота, газогенераторы; и остальная часть книги.-
|
С.В.Суханов
До и после Победы. Книга 1. Начало. Часть 3.
ГЛАВА 1.
Так что поле для ремонта танков было не то что большим - оно было огромным. И не только по собираемым на полях боя и дорогах-лесах-болотах. Часть танков с началом войны так и не вышли за ворота расположений - например, в 11м мехкорпусе "До 10-15 % танков в поход не были взяты, так как находились в ремонте" - изношенных танков в наших частях до войны хватало. Более того - даже отправленные для ремонта на заводы вглубь страны танки продолжали числиться на балансе воинской части, тогда как немцы такие танки вычеркивали из списков - становилось все более понятно, откуда такая разница в танках и почему она не сыграла - в том числе и из-за различий в учете танков, ну и что вообще считалось танком - те же штурмовые орудия у немцев считались не танками, а артиллерией, соответственно и не проходили в графе "Итого танков", как и многочисленные орудия, поставленные на гусеничные платформы - на единички и двойки, на польские, французские, чешские танки, на бронетранспортеры. А ведь все это, по сути, легкие танки - бронирование-то есть, да и ствол там ставился помощнее чем на оригинальной платформе, которую использовали только в качестве средства перемещения этого нового ствола. В общем - "есть ложь, есть наглая ложь, и есть статистика". Это как с тем же сельским хозяйством, которым нас любили пичкать в Перестройку - типа "Вон в Америке в сельском хозяйстве занято всего два процента населения, а у нас - все двадцать" (ну или сколько там). А все оказалось просто - у нас учитывались бухгалтера-механизаторы, работавшие на селе, а у американцев - нет - там они шли в качестве сервиса или как их там называли, но не по графе "Сельское хозяйство". В том числе и фирмы по уборке урожая - они постепенно перемещались с юга на север и убирали урожай с фермерских полей. И при этом занятым в сельском хозяйстве считался только сам фермер, а эти - так, погулять вышли, ага. Так и с немецкими танками. Да и с любым другим вопросом - сначала надо посмотреть, что там вообще есть и как это считали, а уж потом либо прислушаться к воплям "У нас все плохо !!!", либо плюнуть и растереть - если и не вопящего, то саму мысль.
Так вот - хватало у нас и сломанной уже до войны техники, да и с началом боев с ремонтом было "не очень". Так, в одном из донесений говорилось: "Корпуса дерутся хорошо, плохо только то, что штабы малооперативны и неповоротливы, и еще плохо, что много машин достается противнику из-за неисправности пустяшной. Организовать ремонт, эвакуацию не умеют ни дивизия, ни мехкорпус, ни армия, ни фронт. Нет запчастей, нет резины, снабжают плохо. У мехкорпусов нет авиации, а отсюда они слепы, подчас бьют по пустому месту, и отсутствует связь между ними. Потери 5-го и 7-го большие. Сейчас 5-й у Орши и 7-й у Витебска и юго-западнее будут действовать во взаимодействии с пехотой. Противник применяет поливку зажигательной смесью... танки горят. Самые большие потери от авиации. Потеряно 50 % матчасти, 50 % танков требуют ремонта". Это про ситуацию в 5м и 7м мехкорпусах.
Да и ремонтировать порой особо было нечем. Так, в 11м мехкорпусе Мостовенко ремонтные средства практически отсутствовали, из-за чего до войны требующая ремонта техника восстанавливалась не в частях, а на ремонтных базах округа. С началом войны эти базы были потеряны или быстро становились недоступны, поэтому с ремонтом вообще стало тяжко. Что особенно было обидным - многие танки получали совсем небольшие повреждения - заклинило башню, или свернули каток, ну или вообще по мелочи - пара часов работы домкратом и сварочным аппаратом - и все дела. А то и вообще заменить шланг или прокладку. Но не было их под рукой - и танк бросали. Нам, правда, это было на руку, так как далеко не всегда их подрывали и вытаскивали прицелы и затворы, особенно если поломка случалась в зоне действия огня противника - именно такие танки у нас прежде всего и шли на пополнение выбывших в ремонт или в переделку на САУ. Остальные, которые выглядели поплоше, шли на запчасти - их у нас вдруг стало до неприличия много, и воевавшие у нас танкисты не раз говорили, что вот если бы им было позволено так дербанить хотя бы часть танков - все бы вышло иначе. Но до войны - кто же позволит выводить танк из строя, пусть даже он и так не на ходу - ну так ведь по другой причине, и добавление таких причин - если вытащат и переставят, скажем, генератор - можно счесть и за вредительство - ну кто в здравом уме будет рисковать головой ? А с началом войны, конечно, многие так и поступали - для головы нашлись более весомые опасности, чтобы думать еще и об обвинениях в порче техники, вот только "кормовая база" слишком быстро уменьшалась, так как не всегда хватало времени на то, чтобы взять деталь с одного танка и поставить ее на другой, который подавал надежды. Нас же подобные ограничения уже не волновали, поэтому обменный фонд рос довольно быстро, так что по ряду позиций мы уже могли ввести агрегатный ремонт, когда сломавшийся узел или агрегат просто заменяются на новый, и танк может продолжать работать по фрицу, не дожидаясь окончания ремонта этого агрегата, а сломавшийся агрегат тем временем отправлялся в ремонтные мастерские, где его вдумчиво ремонтировали и потом, как только возникнет необходимость, ставили на какой-то другой танк. Ну, если только немного поработать напильником, чтобы встал по месту - посадочные габариты от танка к танку, да и от устройства к устройству, все-таки порой плавали - отсутствие спецоснастки, рассчитанной под конкретные операции, требовало много ручного труда с его ошибками и неточностями - сегодня рабочий намеряет центры отверстий так, завтра не выспется и намеряет эдак - а потом приходится подгонять по месту.
И вот с выходом на просторы наши ремонтные возможности возросли настолько, что аж дух захватывало. Взять те же железнодорожные депо - в Барановичах, Пинске, Волковысске, да и вывезенные из Лиды и Белостока. Это ведь не просто стоянки для паровозов, ведь паровоз - это огнедышащий дракон, чье брюхо заполнено горячей водой, дымом и паром. Он - огонь, вода и медные (а также стальные и чугунные) трубы - ему не надо через них проходить, он сам из них и состоит. Пар и огонь. Адъ и Израиль. В общем, паровоз - довольно агрессивная среда, части которой мечутся под действием сил инерции из стороны в сторону, хотя внешне он выглядит стремительным монолитом. Но это не так. И эксплуатировать его надо очень осторожно. Начнешь прогревать перед поездкой сильным огнем - и слишком неравномерно прогревающиеся трубки дадут трещины. Да даже если паровозная команда будет аккуратна, ей могут дать топливо или воду, содержащие тот же хлорид магния, который под воздействием температуры разлагается на магний - а это отложения, которые увеличивают силу трения, нарушают теплообмен - и хлор - а это хлорная кислота, разъедающая все подряд. Да даже если воду подали чистую - трущиеся поверхности изнашиваются, причем трение возникает не только от движения механизмов, но и от покачивания состава из стороны в сторону. Причем изнашивается металл не только механизмов паровоза, но даже колес. И даже рельс. И все это надо чинить - подтачивать, наращивать, наваривать и сваривать. Так что депо - это по факту не только стоянка для паровозов, но и серьезное ремонтное предприятие со своими станками и литейкой. Да и дорожники от него не сильно отстают - у них есть, например, задачи по шлифованию рельсов, отрезке износившегося участка и приварке нового. То есть обработка металла - это одна из компонент обслуживания железной дороги. На то она и железная.
Причем детали паровоза - как правило, массивные, длинные, да и сам паровоз немаленький. Так что для его ремонта не всегда подойдут обычные станки - на них просто не установишь некоторые детали - не хватит места. Например, поршень паровой машины. Он трется о стенки цилиндра и стесывает их, причем неравномерно - возникает овальность и конусность. Между цилиндром и поршнем возникает зазор, через который начинает подтравливать пар. Пар может сконденсироваться, попасть в царапину, и тогда поршень при очередном движении создает гидродинамический удар - вплоть до трещин в стенках цилиндра. Ну, трещины еще можно заделать, причем не только сваркой - могут навертеть отверстий и завернуть в них медные болты, стесывая их затем заподлицо со внутренней поверхностью стенки. Причем болты вворачивают с перекрытием - то есть ввернули один - и отверстие сверлят уже так, чтобы высверлить и часть этого первого болта. А как восстановить цилиндричность внутренней поверхности цилиндра ? Он ведь немаленьких размеров. Вот тут и начинаются танцы с бубном.
Расточку, если без снятия цилиндра с паровоза, делают специальным переносным расточным станком - вал с резцом крепится по обе стороны цилиндра и вращается внутри цилиндра, приводимый извне электромотором. Растачивать могут вплоть до полутора сантиметров от исходного размера, но чтобы толщина стенок оставалось не менее двух сантиметров, а если оказывается меньше - вставляют втулку, которую отливают тут же и затем перед постановкой растачивают и обтачивают под требуемые размеры - ее уже могут растачивать и отдельно - на токарном, расточном или карусельном станках - какие окажутся в депо - главное чтобы позволили установить и закрепить довольно объемную втулку на рабочий стол и дали бы добраться резцом до внутренней поверхности. При таком ремонте впускные и выпускные окна в стенке втулки прожигают электрической угольной дугой. В любом случае - и после расточки, и после установки втулки - внутреннюю поверхность еще и шлифуют. То есть для ремонта только паровой машины требуются переносной расточный и сверлильный станки, стационарные токарный с высокими центрами, расточный или карусельный, литейка для отливки втулки, сварочные агрегаты. Причем требуется не только оборудование, но и люди, которые могут на нем работать - сделать замеры, закрепить станок, деталь, резец, провести обработку, а в литейке - составить формовочную смесь, набить ее в форму, сварить металл и выполнить отливку. Да и сварщики - это не набранные "с улицы" люди. По сути, это уже целое металлобрабатывающее предприятие.
Ну, если рядом есть предприятия с нужным оборудованием, то часть работ могут поручить и ему. Но оно должно быть. Причем цилиндр могут и снять с паровоза - если в депо нет переносного расточного станка, но в самом депо или рядом в расположенных заводах есть станки, в которых можно закрепить и обработать цилиндр - конкретная технология ремонта зависит от наличия станков и потребного ремонта - есть переносной расточник - обработают им, нет - снимут цилиндр с паровоза и обработают на станках. Главное - снять нужное количество металла, а уж каким образом это произойдет - не столь важно - это уже вопрос времени и трудоемкости ремонта.
Помимо переносных расточного и шлифовального, есть и переносные фрезерные станки, которые применяются для стачивания плоских поверхностей, которые неотделимы от крупногабаритных деталей и агрегатов типа рамы или того же цилиндра - сработавшихся во время эксплуатации или же посадочных, когда надо восстановить соосность цилиндров. И крепятся эти станки так же - зажимами и струбцинами к раме. А после расточки ось цилиндра может поменяться и она становится непараллельной оси рамы - тогда стачивают посадочные плоскости, иначе потом, при работе паровоза, возникают дополнительные изгибающие и крутильные моменты, которые сильнее изнашивают узлы паровоза.
Для других деталей требуется иная обработка. Например, длинные параллели, что толкают колеса, также изнашиваются. Соответственно, при ремонте их поверхности снова делают параллельными - сострагивают на плоскошлифовальных, горизонтально-строгальных или фрезерных станках - какие есть в конкретном депо и, опять же, чьи размеры столов позволят закрепить такую длинную деталь - и затем наращивают толщину до нужного размера - прикручивают так называемый наделок - длинную плоскую пластину, или наваривают металл и затем строгают и шлифуют до получения ровной поверхности. А потом ее еще и закаливают, чтобы уменьшить износ. И снова - нужны станки доя обработки длинных плоских поверхностей, сварка, термичка.
Крейцкопфы - узлы, которые передают усилие от штока поршня на шатун - могут вообще быть изготовлены в депо. Для этого отливают заготовку, прострагивают на строгальном станке или фрезеруют на фрезерном плоские участки, затем растачивают отверстие под валик на карусельном станке - токарный не подойдет, так как помимо немалых размеров крейцкопф имеет сложную форму - и даже если в депо найдется токарный станок с высоким центром осей, так что вращающаяся заготовка поместится, то закрепить ее нормальным способом вряд ли получится - потребуется либо зажим сложной формы, либо стол с направляющими для зажимов. В общем - если есть карусельный станок, чей плоский вращающийся стол, пусть и с использованием приспособлений, разработанных под деталь, чтобы ее выступы не мешали сориентировать ее в нужном положении, позволяет закрепить деталь любой формы, то лучше делать крейцкопф на нем, ну а если карусельного станка нет, то про крейцкопфы рекомендуется забыть. А крейцкопфный валик мало того что обтачивают, так еще и цементируют его поверхность. Опять - строгальный, фрезерный, карусельный, литейка, термичка.
ГЛАВА 2.
Были в депо и специализированные станки, предназначенные для особых видов ремонта. Например, для ремонта паровозных дышел - это длинные стальные балки с ушками для подшипников, передающие толкающее усилие на колеса. Они ремонтируются с использованием горизонтально-расточных и фрезерных станков. На первом растачивают отверстия под подшипники. Для этого надо установить дышло, подвести стол к резцовой головке, чтобы она проходила через первое отверстие, расточить его, сдвинуть стол ко второму отверстию и расточить уже его - и все это - без снятия дышла со стола, чтобы оси отверстий были взаимно параллельны, иначе возникнет изгибающее усилие. Так вот - при обработке отверстий на одношпиндельных станках все-равно есть вероятность несоосности - любое перемещение детали может внести рассогласование - например, из-за малейшей неточности в направляющих. И чтобы чтобы увеличить параллельность, сделали двухшпиндельные станки, на которых оба отверстия одного дышла растачиваются одновременно, без перемещения стола. Более того, в Германии были и пятишпиндельные станки, позволявшие делать расточку сразу пяти отверстий под подшипники, что обеспечивало повышенную соосность и точность расстояний между центрами всех дышел одной стороны паровоза.
Вот фрезерный был почти что обычным станком, не считая того, что обрабатывал длинную деталь - им надо пройтись вдоль рамки под подшипники скольжения, чтобы ее изношенные поверхности снова стали плоскими и параллельными. Для обеих операций требуются станки, чьи столы смогут вместить двух-трехметровые длиннющие детали. Еще выполняют шлифовку валов и поверхности дышла - тоже требуются станки с длинным столом. Другим деталям дышла достаточно и обычных станков. Например, фрезеровка самих подшипников может выполняться на небольших станках - размеры подшипников это позволяют. Для колец валиков сцепных дышел требуются прокованные заготовки, соответственно, в депо необходимо кузнечное оборудование. Как и прессовое - операций прессовки-выпрессовки также требуется изрядно.
Для ремонта паровозов требуется и оборудование для хромирования - например, для валиков сцепных дышел. Хромирование и цементация - да еще с последующим шлифованием для доводки нужного размера - применяются и для парораспределительного механизма, которому необходимы повышенная точность сочленения деталей и износостойкости.
Причем для этих длинных деталей может потребоваться и правка, если они получили деформацию во время эксплуатации - их устанавливают на прессе и выгибают в противоположную деформации сторону. Так как дышла выгибались довольно часто, то опыт у рабочих уже был немаленький, они даже удивили, когда таким же образом вернули в рабочее состояние коленвал дизеля В-2, получившего изгиб скорее всего от остаточных деформаций, которые вылезли после начала эксплуатации - слишком он был ровным, без скручивания. Хотя и со скручиванием, как заверили рабочие, они бы справились - дышла-то тоже не только выгибало, но и скручивало. "Разве что подольше пришлось бы повозиться", сказали они, и вернулись к выправке орудийного ствола, который также выгнулся из-за деформаций - "А нам-то что - пресс мощный, поставлен недавно, что хочешь сможем выправить - вона еще сколько ждет" - и синхронно махнули в сторону стеллажей, на которых чего только не было - от орудийных стволов и головок блоков цилиндров до элементов бортовой брони - мелочевку типа винтовочных стволов или шатунов выправляли тут же, но на менее мощном прессе - у нас образовался как бы центр компетенции по выправке изогнутых деталей, где мы не только собрали владевших этим делом мастеров, но и набрали им учеников - чувствую, править нам придется много и часто. Правда, этот центр образовался практически сам собой, вокруг установленного тут мощного пресса. Это уже мы - руководство - углядели, что сюда все чаще начали возить погнутые и скрученные детали, так как пошли слухи, что "тут чего только не выправляют", поэтому взяли процесс под свой контроль, точнее - упорядочили его административно - и организацией перевозки деталей, чтобы все знали, куда везти изогнутое, и материально, подкинув еще прессов и оборудования для изготовления оправок, и пополнив начинание людьми.
И таких начинаний каждую неделю выявлялось по одной-две штуки минимум - предоставленные сами себе и имеющие общую цель, люди сорганизовывались в стихийные структуры, которые оставалось лишь явно оформить и помочь - я потому и любил разъезжать по хозяйству, потому что порой и выискивались такие "центры". Так, один из таких центров, точнее - пока еще центриков - я обнаружил, когда заехал на Волковысское депо - там как раз налаживали ремонт ведущих колес от Т-26. Так вот там я стал свидетелем того, как мастер отчитывал ученика - ученик по недосмотру ткнул электродом в пролитое машинное масло, за что получил оплеуху и несколько не менее крепких выражений в свой адрес. Но принял все это стоически, да и мастер мне объяснил, что вот мол - толк из него выйдет, только внимательности надо ему прибавить, а то неровен час ... "Неровен час" чуть не настал прямо тут же, когда я смахнул тряпкой злосчастное масло и уставился на небольшую выемку в металле. И только потом, по спавшему лицу мастера, понял, что деталь-то была под напряжением - ученик как раз собирался отрабатывать на ней сварку по кругу. Меня же заинтересовала именно выемка - она повторяла контуры электрода.
- Давай-ка еще раз. - махнул я ученику.
Тот ткнул электродом, но ничего похожего обнаружено не было.
- А масла капни ...
Вот с маслом на металле снова образовалась выемка, причем при последующих тыканьях она понемногу углублялась. Так мы открыли электро-искровой способ обработки материалов, правда, на тот момент мы его так еще не называли, и уж тем более не знали, что его же изучали и в Москве еще с тридцать восьмого года. Так что мы посадили на это дело пару учеников под присмотром мастера, и они начали пока набирать статистику - как лучше и эффективнее искры выбирают металл. Причем лучше они делали это именно в масляной среде, хотя и в газовой тоже работало, но по другому.
А уже через пару недель, проезжая там же, я наблюдал, как с помощью новой технологии доставали сломавшийся метчик - искрами пробили в метчике глухое квадратное отверстие, воткнули в него торцовый ключ и вывернули обломок. Причем проделали отверстие довольно быстро, со скоростью примерно три миллиметра в минуту, и это - в легированном и закаленном металле. Как мне сказали, электрорезка в минуту делала рез площадью пятнадцать квадратных сантиметров, а электрошлифовка снимала около тридцати грамм твердого сплава - народ поупражнялся с разными материалами и приемами работы, а я понял, что направление надо срочно усиливать людьми - сейчас на изучении новой технологии помимо тех двух учеников и мастера работало на общественных началах еще с десяток человек - людям было интересно пощупать новую штуку - "Естественно, не в ущерб основной работе" - заверил меня мастер. Дело нужное, тем более что методы наплавки и упрочнения поверхностей электроразрядами тут уже использовали - например, разношенные желоба для поршневых колец тут восстанавливают до нужных размеров навариванием металла с применением электросварки. А для упрочнения использовали работы Дульчевского от двадцать восьмого года, он же, кстати, в тридцать девятом получил патент на наплавку реборд вагонных колес с применением нескольких автоматических сварочных головок - тут перед войной уже начали самостоятельно собирать такой автомат, но не успели. Так что опыт применения электричества в обработке металлов тут был, да и другие методы управления формой и характеристиками металлических поверхностей мы как минимум начинали щупать. Так что и искровая обработка пошла в тот же пул новых технологий.
Да и обычные технологии обработки металлов тоже понемногу прогрессировали, подстраиваясь под самое для нас сейчас главное - ремонт танков. Показателен в этом плане ремонт паровозных кулис, для которого требуется перемещение стола по дуге радиуса кулисы - для этого, оказывается, существует специальный вертикально-фрезерный станок типа Рейнекер. Это я почему заостряю на этом внимание - раньше я как-то считал - ну, есть фрезерные станки обычного типа - и достаточно, и ладно. Ладно-то ладно, вот только не для всех работ они подходят. То же движение по дуге - да, можно смоделировать и на обычном фрезерном, но требуется очень высокая квалификация фрезеровщика, чтобы он с помощью прямолинейных перемещений стола и фрезерной головки повторил бы это самое движение по дуге. Ну или сделать приспособление, которое будет выполнять это движение. Это я еще опускаю момент - как закрепить длинную деталь на сравнительно коротком столе - потребуется его наращивать, да чтобы он выдерживал нагрузки от обработки, да и вести ее придется с меньшей подачей. Так что длинный стол - это не только удобство, но и скорость обработки. Ну и отдельный - специализированный по заготовкам большой размерности - станок - тут уж ничего не попишешь.
Это я к тому, что прежде всего наличный станочный парк обуславливает скорость, трудоемкость изготовления деталей - помню, видел в Ю-Тубе, как китайцы делали фланец диаметром метра полтора. Съемка уже десятых годов. Обстановка - модели "полузаброшенный гаражный кооператив" - бетонные заборы с зарослями травы, небольшие строения, покрытые шифером, пыльная площадка с то ли бетоном, то ли вообще утоптанной землей - тут и трудятся китайцы. Достали погрузчиком из печи квадратный стальной слиток толщиной сантиметров двадцать и со стороной под полметра, поставили вертикально на угол между вертикальными же пластинами - чтобы не завалился - и - тюк сверху железной чушкой, чуть повернули ломами - чушка поднялась (хорошо хоть электромотором) - и снова - тюк - и так раз пятьдесят - повернут - тюк!, повернут - тюк! Сделали из квадрата неровный круг - и в печь, так как за это время он из желтого стал темно-красным. Нагрели, достали, положили плашмя, поставили по центру обрезок трубы - и снова сверху - тюк-тюк-тюк - продавили обрезок и вырезали-таки середину - получился толстый бублик, только с прямыми краями. Опять нагрели, продели на трубу, поставили подпорку - и, проворачивая каждый раз ломами - тюк-тюк-тюк - стали ударами раскатывать во все более тонкие стенки. Уж не знаю, сколько по времени это заняло - ролик шел минут двадцать, но с пропусками, так что, думаю, часа за два, может, за три - управились. Ну а потом отвезли это кольцо на металлообрабатывающий завод и там уж обточили. Так работают китайцы. И рядом на том же сайте лежал ролик с немецкого завода - начали, правда, уже с заготовки-бублика, но - поставили его на спецстанок - и между двумя постепенно сходящимися конусами откатали кольцо чуть ли не за полминуты - оно так и осталось желтого цвета - экономия и времени, и энергии. Это я к тому, что буквально на коленке можно сделать многое, если не все - вопрос лишь в трудоемкости. А способом ее снижения, как я понимаю, являются специализированные станки, устройства и приспособления, которые предназначены для выполнения узких задач, но быстро и массово. Не знаю, может это я Америку открыл, и тут все про это в курсе, ну и ладно - относятся к этому с пониманием и поддержкой - уже хорошо. Им же все это и делать.
ГЛАВА 3.
Хотя одни и те же вещи тут делали по разному. Например, поршневые кольца паровых машин делаются из чугунных барабанов - те отливаются, как и втулки для цилиндров, затем на токарном станке грубо обтачиваются и растачиваются, затем разрезаются на кольца, и уже дальше идет обработка каждого кольца - прорезать замок на фрезерном станке, затем свести кольцо хомутом и обточить на токарном до нужного размера, и затем дошлифовать боковые грани. А если есть карусельный станок - то могут обрабатывать сначала сам барабан, а разрезать его на кольца уже в конце процесса. Повторюсь - для каждой детали может быть несколько вариантов изготовления, и у кого какое оборудование есть - тот исходя из него и строит технологический процесс.
Но основная сложность - это правильно все вымерять и закрепить. Ну или сделать приспособления, в которые устанавливать детали - тут уж сложности, связанные с измерениями, перекладываются с изготовления детали на изготовление приспособления и создание на заготовке базовых плоскостей и отверстий, по которым деталь будет базироваться в приспособлении. Другое дело, что изготовление того же крейцкопфа - дело нечастое, поэтому делать для него кучу приспособлений просто нет смысла - трудоемкость их изготовления будет сравнима с трудоемкостью изготовления самих крейцкопфов лет за десять, а если на участке обслуживается несколько типов паровозов, то и за все время работы депо. Вот если бы крейцкопфы делать массово и для одной модели - наличие специализированных приспособлений имело бы смысл. Но такое делали даже не на всех паровозостроительных заводах, отсюда - и недостаток крейцкопфов, да и других деталей, на замену, отчего их приходилось делать в том числе и в депо - несмотря на социалистический строй, про который бытует мнение, что он сильно централизован, централизацией в изготовлении деталей тут и не пахло - каждый ваял их на свой манер и с соответствующими трудозатратами, на круг - в масштабе страны - равными, пожалуй, утроенной трудоемкости изготовления паровозов - специализация-то у рабочих по деталям отсутствовала - сегодня одно, завтра - другое, и каждый раз надо примериваться, как бы это изготовить - потери на подготовку были колоссальными, да и не каждый мог еще и изготовить какие-то детали. И это в каждом депо. Неудивительно, что квалифицированных рабочих постоянно не хватало, а стоимость обслуживания зашкаливала и компенсировалась лишь невысокими зарплатами и неустроенностью быта.
Ну это я так, пока присматривался да ворчал про себя - сами-то люди, ну, которые не начальники, а рабочие - были непричем, даже наоборот - герои, которые могли сделать буквально все - дай только металл и время. Ну и не пили мозги постоянным "давай-давай". Вот начальство, которое по идее должно все это продумывать и организовывать, как-то мне не нравилось - не наблюдалось такой масштабной организации - все какие-то заплатки и костыли. Может, просто не хватало времени, может - знаний, а может, это я чего-то не понимаю. Посмотрим. Собственно, мы - я - сейчас создавали такие же костыли, но под нашу конкретную ситуацию. Так что не мне пока кому-то пенять. Но, как мне тут рассказывали, в той же Америке паровозы отбегают пять-десять-пятнадцать лет - и на переплавку. Могли себе позволить за счет массового выпуска паровозов, но мне вот было интересно - за счет чего они обеспечивали этот выпуск ? По населению они на треть меньше СССР - у них примерно 130, у нас - 200 миллионов ... неужели только за счет большего количества рабочих ?
Причем в СССР вполне понимали проблему - как писалось в книге "Курс паровозов" от тридцать седьмого года, которую я пролистал, чтобы быть хоть немного в теме - "Содержание ремонта в депо должно включать в себя не ремонт деталей паровоза, а замену неисправных частей запасными, имеющимися всегда в наличии в кладовой". Все дело портили недостаток паровозоремонтных заводов и избыток моделей паровозов. В той же книге высказывалось благое пожелание прикрепить "к ремонтным заводам определенных обслуживаемых ими районов с минимальным количеством серий" паровозов, но пока это не было реализовано, в том числе и из-за недостатка высококвалифицированных рабочих, которые требовались в депо, потому что паровозоремонтные заводы не могли обеспечить весь потребный ремонт подвижного состава, прикрепленного к депо, потому что на заводах не хватало рабочих, которые трудились в депо, потому что ... ну и так далее - проблема курицы и яйца родилась не вчера.
Дело усугубляла и направленность на хозрасчет - "Проведение ремонта как в депо, так и по заводам на основе полного хозяйственного расчета с передачей в ведение начальника завода, начальника депо средств производства, материальных ценностей и кредитов" - нормально, да ? мало того что другой рукой явно разрешают ремонт в депо (не говоря, какой именно имеется в виду - то ли простая замена деталей, как говорилось ранее, то ли еще и изготовление), но еще и методы хозрасчета прямо-таки побуждают начальников депо развивать у себя ремонтные мощности в максимально возможном объеме - ну кто захочет отдавать заказ на сторону, когда его можно выполнить и своими силами, пусть менее эффективно, зато будет экономия на оплате работ сторонней организации, в данном случае - специализированного завода - его стоимость всяко включит и содержание административного персонала этого завода (а сколько его там содержится и как он оплачивается - начальник депо на это повлиять не может), и вероятные простои каких-то производств этого завода (скажем - для литейки в данный момент работы нет, а зарплату рабочим платить надо - вот и включают ее в стоимость для депо).
Вот и приходится отмечать, что "дело с изготовлением запасных частей заводами для депо коренным образом должно быть изменено. Мы должны не только резко повысить количество выпускаемых запчастей, что прекратит в депо развитие кузниц, литейных, работающих кустарно и непроизводительно, но и повысить их качество. Запасные части, изготовленные по градациям и допускам, устранят необходимость ручной пригонки и сократят сроки простоя".
Под градациями и допусками тут понималось намеренное изготовление одних и тех же запчастей, но слегка разных размеров - ведь износ посадочных мест и самих частей на паровозах может быть разным, соответственно, для конкретного ремонта необходимо снимать разное количество металла. И чтобы минимизировать такую механическую обработку, и нужны детали, в размерах которых уже учтены эти возможные разбросы. Да, сколько-то снимать все-равно придется, но какие-то износы вообще попадут точно в размер одной из запчастей, какие-то износы можно будет починить меньшей механообработкой, наплавкой и шлифовкой - ремонт резко ускорится и потребует меньше операций, хотя платой за это и станет повышенное количество номенклатуры одной и той же запчасти. Ну, этот момент можно было бы решить плановыми осмотрами - дошел износ до какого-то норморазмера - меняем на соответствующую ему запчасть.
Вот только заводы пока не справлялись с поставками даже запчастей альбомных размеров - слишком большая номенклатура используемых паровозов и так требовала слишком большой номенклатуры запчастей, и в ближайшие годы переломить ситуацию не удастся - паровозов и так не хватало (в том числе и из-за больших простоев при ремонтах - все та же "проблема курицы и яйца"), а быстро сделать большое количество однотипных паровозов не получалось. А в Белоруссии в связи с недавним расширением мощностей не хватало тем более. Минский вагоноремонтный завод вырос из паровозовагоноремонтных мастерских, основанных в 1871 году, и к началу войны занимался ремонтом вагонов. А ремонтом паровозов занимался Гомельский паровозоремонтный завод.
ГЛАВА 4.
Это я все к чему веду - железнодорожные депо имели станочный парк, приспособленный для довольно сложного ремонта таких объемных механизмов, как паровозы и вагоны. Но ведь такими же объемными механизмами являются и танки. А их у нас стало очень много - на местах прошедших в конце июня боев мы собрали более двух тысяч коробок - и это только наших. Причем некоторые было достаточно лишь залить бензином или дизельным топливом - и шайтан-машина оживала. Другие, конечно, требовали ремонта, а порой просто раздербанивались на запчасти и металлолом. Но факт в том, что недостатка в технике мы не испытывали - мы испытывали недостаток в ремонтных мощностях. Немцы, кстати, уже начали приспосабливать депо и металлургические с металлообрабатывающими заводами к ремонту танков - в одних только Барановичах мы захватили более ста единиц немецкой бронетехники разной степени покоцанности. Ну и немецких техников-механиков тоже прихватили более сотни - это только тех, кто остался жив, кому повезло не быть сразу принятым из-за своей черной формы за эсэсовца с моментальным уничтожением.
В общем, тут были оборудование и персонал для ремонта объемных металлических конструкций. Взять те же паровозные рамы, на которых и покоились остальные механизмы. На раму действуют растягивающие-сжимающие и изгибающие нагрузки. Первые - это сила давления пара в цилиндрах - штоку ведь надо толкать колесо - вот цилиндр и упирается в раму, тогда как колесо удерживается на ней же осью - и совместно они пытаются разодрать кусок металла, находящийся между ними. А изгибают раму, помимо веса оборудования, и динамические нагрузки - подпрыгивания на стыках и неровностях рельс, удары реборд о рельсы при проходе кривых, инерция при вилянии паровоза и состава. Все это может выгнуть раму - ее лист или отдельные бруски, они даже могут треснуть, как могут треснуть или ослабнуть и соединения - клепка или болты.
Старые рамы были листовыми, то есть состояли из одного широкого и длинного - 10-13 метров - листа толщиной около трех сантиметров, к которому остальные агрегаты крепились клепкой, сваркой, болтами. Причем это не простой прямоугольник - в нем проделаны разнообразные вырезы для механизмов и крепежа колесных тележек и котла, которые ослабляют и так не слишком жесткий лист. Так что неудивительно, что при езде он гуляет и, соответственно, в конце концов идет трещинами, а то и рвется. Да и постоянные изгибы разбалтывают соединения - резьбовые, клепочные, сварные, так что их приходится часто проверять и подтягивать-подклепывать-подваривать, что удорожает и эксплуатацию таких паровозов - тупо требуется больше народа даже для текущего обслуживания. Это я к тому, куда уходит рабсила и почему ее вечно не хватает - конструкторские решения, зачастую вызванные недостатком технологий или оборудования, затем аукаются ее расходованием на поддержание машин и оборудования в работоспособном состоянии. Несколько помогают ребра жесткости, но они же значительно увеличивают трудоемкость изготовления таких рам.
Современные мощные паровозы все чаще имеют брусковые рамы, состоящие из длинных брусков толщиной от десяти до пятнадцати сантиметров, причем в СССР пока еще в основном применяются прокатанные бруски, тогда как в США их уже давно отливают, что снижает трудоемкость изготовления и потери. Да чего там - в Америке уже начинают делать цельнолитные - "интегральные" - рамы, когда заодно отливают мало того что все ребра, соединения и междурамные скрепления, так еще и цилиндры. То есть рама и цилиндр - это единый массив металла. Безо всяких соединений. Неудивительно, что они могут клепать паровозы горстями, тогда как нам пока приходится долго прокатывать бруски, потом их соединять ... Хотя перед войной Ворошиловградский (по-нашему - Луганский) завод переходил на выпуск литых рам, пусть и без одновременной отливки цилиндров.
А перед соединением брусков в раму их еще надо как следует прострогать - если в листовых рамах свинчиванием болтами можно притянуть части рамного листа к креплениям за счет ее гибкости, то в брусковых жесткость бруска такого уже не позволит, так что без строгания контакт с крепежом будет неплотным, соответственно, он мало того что может быть неточным, так еще и быстрее разболтается, когда металл неровностей на сопрягающихся поверхностях начнет проминаться. А строжка длиннющих брусков - это отдельная и длительная процедура.
В депо, кстати, были строгальные станки, на которых выполнялся немалый объем работ - вплоть до сострагивания износившихся частей тех самых рам - ну, где были такие большие станки. Так вот - строгальные станки меня приятно удивили. В школьные годы в УПК меня обучали работе на фрезерном, ну и немного на токарном станках, поэтому я искренне недоумевал - нафига нужны эти строгальные ? Вместо того, чтобы елозить резцом туда-сюда - гораздо ведь быстрее профрезеровать все что нужно, так ? Так, да не так. Фреза - сам по себе сложный инструмент - и в плане изготовления, и в плане заточки - с резцом не сравнить. Ну, ладно - резцы обходятся дешевле, ну то есть менее трудоемкие в изготовлении и обслуживании. Так ведь в ряде случаев они могут быть еще и производительнее ! Если брать резцы с широкой режущей частью - скажем, сантиметр - а не те, у которых один острый угол - такие широкие резцы еще и дадут фору фрезам - ими можно снять нужные объемы в два, а то и в три раза быстрее, чем фрезой. А если установить протяжку, с ее несколькими зубьями - так и вообще - порой р-р-раз ! - и поверхность сострогана вообще за один проход. Так что я стал относиться к строгальным станкам совсем по-другому. Один раз мне даже показали как на них обрабатывать цилиндрические поверхности - просто сломался токарный станок, а деталь была нужна вот прямо сейчас - так рабочий закрепил ее в поворотной головке - ее еще называют делительной - с ее помощью можно делить окружность на углы - и, поворачивая ее после каждого прохода резца, он довольно быстро сделал детали нужный диаметр. Хотя были тут и двухшпиндельные продольно-фрезерные станки, на которых также могли обтачивать, например, буксовые наличники.
Правда, ремонт рам с полным разбором тут выполняли нечасто. Обычно их пытались ремонтировать без разборки, ну, может, приподнимут котел, чтобы домкратами выправить изгиб рамы. А обычный ремонт заключался в восстановлении посадочных мест под крепления и отверстий - тут широко применялся переносной инструмент - наждачный круг, насаженный на электрическую или пневматическую машинку, переносной шлифовальный станок, шлифовальный станок, устанавливаемый на специальном стойле, переносные фрезерные и расточные станки, которые также крепились на раме. Собственно, эту же технологию мы начали применять и для ремонта танков - расточить отверстия в броне, заменить втулки - работа для "паровозников" была привычной.
В раме часто делали ремонт креплений котла. Он крепится к раме не жестко, а на опорах, позволяющих ему, точнее его отдельным частям, двигаться относительно рамы, чтобы компенсировать температурные деформации при нагреве и охлаждении. А деформации бывали значительными, особенно если образовывался слой накипи, которая очень нетеплопроводна - даже незначительный - в один миллиметр - слой поднимает температуру труб котла с 250 до 500 градусов и железо выпучивается. То есть необходимо делать периодическую промывку, чтобы убирать накипь. И тут тоже есть тонкости - при нагреве во время работы внутренние части котла - топка, трубы, связи - удлиняются, скажем, на 25 миллиметров, а внешняя стенка котла - всего на 20 миллиметров - уже сама разница в пять миллиметров может привести к разрывам металла. А в паровозах с медными топками - тех же "Щ" - разница достигает и 12 миллиметров. Так порой умники промывают еще неостывший котел (а его стараются держать на одной температуре - чтобы не гонять туда-сюда температурные деформации) холодной водой - более тонкие трубы охлаждаются быстрее, более толстые стенки топки и котла - медленнее - и привет - появляются надрывы и трещины.
В упомянутой мною книге для таких работничков встречался более принятый в эти времена термин "вредители" - и я им не завидовал. Суровые времена - вот так вот взять и обвинить человека не в дурости, а в сознательной порче. Я сам порой замечал, что народ слишком нервно относится к косякам - что своим, что других. И ладно бы дело было просто в обвинениях и доносах - так ведь народ порой из-за этого пытался их просто скрыть - а это уже подлянка, подложенная другим свинья, и, с учетом ведущихся боевых действий, "хрюкнет" она скорее всего в самый неподходящий момент - когда не только времени нет на исправление чужих косяков, но когда сам этот косяк может привести к гибели другого человека. Так что я постепенно вводил, как я его называл, "режим понимающего отношения", хотя некоторые называли это излишним благодушием, потворствованием, и прочими нехорошими словами. Может, так оно и было - но сразу ведь не разберешься, и если гнобить людей за малейший косяк - людей-то и не останется. Нам ведь приходилось набирать в производства порой совсем неопытных людей - лишь бы голова варила. А без опыта - то есть знания тонкостей - косяки просто неизбежны - слишком много нового человек сразу не усвоит, поэтому упущения возможны и даже наверняка будут. Мы, конечно, административными мерами старались снизить количество нового в единицу времени, чтобы человек успевал адаптироваться - вводили и ограничения по сложности выполняемых работ, и пониженные нормативы на первый период - но косяки все-равно случались.
В общем, помывочная техника была в депо очень развита, и мы применяли ее для ремонта танков. Ведь перед ремонтом танк надо помыть, иначе та же грязь и следы масла, оказавшись в районе свариваемого шва, испортят его нафиг, напитав лишним углеродом, водородом и прочими лишними элементами. И тут паровозные мойки пришлись как нельзя кстати. Тем более что паровозы промывали щелочными растворами и горячей водой - самое то и для танка. По сравнению с ручной мойкой, что была у нас до "приобретения" депо, ускорение помывочных работ составило чуть ли не двадцать раз, при несомненно лучшем качестве. А для снятия краски мы применяли пескоструйные агрегаты - пескоструйную обработку запатентовал один американец еще в 1870м году. А еще нагар, накипь, коррозия, обезжиривание - для всего этого также применялись установки, что были в депо. Одно это значительно снизило трудоемкость ремонта. А сварочное оборудование депо и специалисты - с ними получил ускорение не только наш ремонт, но и производство самоходок на базе танков.
ГЛАВА 5.
Ведь паровоз состоит не просто из металла, а из довольно толстого металла, который постоянно трескается, ломается и рвется. Как правило этот металл - сталь, пусть и малоуглеродистая, типа Ст.2, а на старых паровозах - медь. Толщина стенок топки - 13-21 миллиметр - в зависимости от паровоза. Стенки барабанов котлов - 15-28 миллиметров. Да даже трубы - сравнительно толстостенные металлические конструкции - диаметр жаровых труб - 13-15 сантиметров с толщиной стенки в 4 миллиметра, дымогарных - 5 с толщиной стенки 2,5-3 миллиметра.
И все это надо было заваривать. Так что опыт сварки толстостенных конструкций тут имелся. Правда, сталь на танках была другой - высокоуглеродистой, легированной. Из-за большего количества углерода такая сталь плавилась при более низкой температуре, поэтому, чуть задержишь сварку на одном месте дольше положенного - и пойдет перегрев, который приводит к образованию крупных кристаллов, а это - пониженные прочностные характеристики, и прежде всего - ударная вязкость - такие швы могут разойтись от удара не то чтобы камнем, но снарядом довольно мелкого калибра. Поэтому сварку ведут постоянным током обратной полярности, так как на аноде более горячее место - на нем выделяется более сорока процентов тепла, тогда как на катоде - на семь процентов меньше. Да еще и на пониженном по сравнению с расчетным токе - все для того, чтобы уменьшить вероятность перегрева. И сварку проводят быстро, поэтому поначалу у нас ее делали только высококвалифицированные сварщики, которые могут четко провести электродом по шву - не задерживаясь, чтобы не возникало перегрева, но и без пропусков, чтобы избежать недовара.
Причем применяли обратно-ступенчатый метод сварки, когда заваривали короткими швами в обратном общему направлению заварки - положат валик сантиметров десять на ближнем к себе участке, ведя электродом по направлению на себя, затем, отступив столько же от дальнего конца свежего валика, снова варят по направлению к себе очередной участок - и когда дойдут до первого наваренного участка - тот тоже начинает нагреваться и отпускается - снимается закалка первого участка. Затем концом третьего участка снимается закалка второго - и так далее. Ну а если углубление было большим и для его заварки в шве накладывалось несколько валиков, то эти валики перекрывали валики предыдущих участков как минимум на треть. Да и кратер - углубление, остающееся в конце каждого шва - выводили на подкладки из простого железа - то есть подкладку приваливали тем же швом и убирали ее после остывания, а то и оставляли на броне - кратер теперь был в шве этой подкладки, а не в шве, расположенном на броне. А то еще поверх шва наварят накладку, чтобы дополнительно усилить шов и защитить его. В общем - повышенный углерод создавал дополнительные проблемы.
Создавали их и легирующие примеси. Так, их повышенной содержание снижало теплопроводность бронестали - как результат, прилегающая к шву зона такой стали хуже выводит тепло дальше в глубину, из-за чего она получает закалку, которая потом приведет к трещинам или повышенной хрупкости. С этим боролись, накладывая еще один дополнительный - отжигающий - валик шва - каждый последующий валик отпускал закалку, возникшую из-за предыдущего, и если не класть отжигающий - уже как бы и лишний - то останется закалка от последнего валика. Причем положить этот валик надо аккуратно - в двух-трех миллиметрах от края шва - так, чтобы он отжег нижележащий валик, но вместе с тем не закалил новую порцию основного металла.
С легирующими примесями есть еще одна беда - они выгорают, то есть соединяются с кислородом, как результат - в металле шва образуются тугоплавкие оксиды, снижающие прочность. То есть при сварке легированных сталей возникала задача допустить к месту сварки как можно меньше кислорода. С этим мы боролись несколькими способами. Края будущего шва тщательно зачищались, чтобы в них было как можно меньше ржавчины - этим занимались "подмастерья". Также применяли электроды с толстой обмазкой, чтобы максимально затруднить доступ воздуха - при разложении обмазки под действием высокой температуры такие электроды дадут больше газов, да и сами электроды выделывали из бронестали, чтобы они хоть как-то компенсировали расход легирующих добавок. Сварка в среде углекислого газа не подойдет - он сам содержит кислород и под высокой температурой разлагается, а образующийся при этом углерод науглероживает сталь шва и ее свойства меняются не в лучшую сторону - сталь становится тверже, но и более хрупкой, что для танка плохо. Не подойдет и водород - он насыщает металл шва и также делает его хрупким из-за газовых пузырей. А инертные газы типа аргона нам недоступны, так что только защита обмазками и легирование электродов.
И проблемы из-за примесей на этом не заканчиваются. Примеси повышают устойчивость аустенита, в результате чего он начинает распадаться не при высоких, а уже при небольших - градусов двести - температурах, когда окружающий металл уже застыл и малоподвижен. И если скорость охлаждения невелика, он будет превращаться в перлит или сорбит, которые имеют ту же плотность, поэтому напряжений не возникнет. А вот если скорость остывания будет большой, он превратится в мартенсит, плотность которого больше - то есть в теле металла появятся как бы полости - мартенсит вожмется в себя и вокруг появятся пустоты, а следовательно - напряжения, которые уже практически не будут компенсированы пластичностью металла - при таких температурах она уже довольно низкая. Тут уж поможет только предварительный прогрев свариваемого участка, подбор флюса, чтобы он обеспечивал защиту от быстрого остывания, да и помещения, где выполняется сварка, должны быть без сквозняков.
К счастью, ремонт паровозов требовал и сварочных работ по чугуну - а это ведь тоже сплав с повышенным содержанием углерода - тут и повышенная жидкотекучесть, когда металл слишком быстро растекается по поверхности металла и мешает отходу газов - шов получается пористый; и отбеливание при слишком большой скорости охлаждения, когда углерод не успевает выделиться в виде графита и образуется карбид железа. Так что тут были специалисты, знакомые с особенностями сварки высокоуглеродистых сталей, поэтому мы сложили знания механиков из танковых частей с оборудованием и знаниями железнодорожников.
Так-то, поначалу у нас было всего трое сварщиков, которые могли работать с бронесталями по полной программе - заделывать большие пробоины, переваривать борта, хотя людей, работавших с бронесталями вообще - было больше - человек двадцать, как правило - из ремонтных подразделений танковых частей. Но там они в основном либо подваривали обвес, либо заделывали небольшие пробоины - вырежут бензорезом заготовку, обточат ее на токарном станке, вставят в отверстие в броне - и обваривают - даже если шов получится не слишком качественным, то для таких небольших участков это несущественно - второе попадание в это же место маловероятно, в крайнем случае - пробка просто отвалится из-за близкого попадания. К тому же они больше работали с высокотвердыми сталями, которые использовались в качестве брони на легких танках и должны были противостоять сравнительно легким пулям. На средних же и тяжелых танках сталь была помягче и, соответственно, более упругая, чтобы могла выдержать удар снарядами и не расколоться. Так что мы сразу же начали набор людей на обучение - прежде всего тех, кто уже ранее работал сварщиками в танковых частях, но не брезговали и теми, кто с бронесталями еще не работал. Для тренировки им даже придумали тренажер - держалку электродов, закрепленную в нитях - ее надо было вести вдоль поверхности, шкив, на который были намотаны нити, создавал нужное сопротивление движению, заодно измеряя скорость прохода, а электромагнитный щуп на держалке замерял расстояние до поверхности - так сварщики и учились вести агрегат с нужной скоростью и на нужном уровне - набивали руку, приобретали вколоченную в мышцы моторику движений - это ведь один из главных навыков хорошего сварщика.
Правда, если поначалу мы предполагали, что все эти люди будут заниматься ремонтом техники, то постепенно усилия все больше смещались в сторону переделки танков в самоходки. Окончательно это направление стало самым важным после нашего выхода на большие просторы, когда в нашем распоряжении оказались тысячи корпусов, так что можно было выбрать относительно целые и их и развивать, оставив сложные случаи на потом или на никогда. Нет, в августе мы попытались поремонтировать и корпуса с сильной деформацией, когда нарушались взаимные расположения установочных поверхностей и отверстий под агрегаты. Причем выбрали еще несильно пострадавший танк, у которого были небольшие нарушения корпуса, и на нем попытались что-то сделать - сошлифовать или наплавить установочные поверхности агрегатов, так, чтобы оси агрегатов были максимально параллельны, а оси ведущих колес проходили наружу через подшипники. Но промучались недолго и бросили это дело - хватало более пригодных для ремонта танков, и устанавливать двигатели и передачи еще и на такие покореженные - слишком трудоемко - надо очень точно соблюсти все эти параллельности на больших расстояниях, то есть требуются измерения и обработка очень высокой точности - иначе агрегаты будут работать под углом, пусть и небольшим, но и он даст повышенный износ, причем самый противный - на конус или кособокость - из-за несимметричности осей и, соответственно, несимметричности в передаче нагрузок через зубчатые передачи и валы. Так что до середины сентября мы разгребали самое простое, и только потом снова подступились к таким тяжелым ремонтам и созданию для них сборочных и измерительных приспособлений, приспособлений для обработки, а к октябрю наши уже подумывали о специализированных станках, которые позволят соблюсти параллельность при обработке далеко разнесенных поверхностей - тут все дело в жесткости, которую будет необходимо обеспечить на больших - два-три метра - расстояниях, причем станок надо будет как-то устанавливать в корпус ... или корпус кантовать, чтобы подвести установочные поверхности под инструмент ... еще будем думать.
В общем, объем сварных швов рос, хотя и не такими темпами, как нам бы хотелось. Тут все зависело от характера работ. Скажем, если заделать сквозную пробоину от бронебойного снаряда - тут могло работать более сотни человек, причем на броне любых танков. Там и дел-то - вырезать заготовку, обработать ее на токарном станке под размеры пробоины, разделать края самой пробоины - сбить окалину да очистить от грязи - и знай себе проваривай - пробоины были небольшими, так что если даже сварка будет некачественной, это не сильно повлияет на снарядостойкость танка.
Другое дело с заделкой разрушенных броневых листов или наваркой дополнительной брони. Заделка листов, особенно у средних, а тем более тяжелых танков - сложный процесс.
Разрушенный участок надо вырезать - и сам пролом, и вогнутый вокруг него металл, и участки, по которым пошли трещины. А если танк горел - надо еще посмотреть что там с твердостью стали - не выгорел ли углерод - для этого сошлифовывали верхний слой и затем проверяли твердость. Вырезали, как правило, бензорезом, причем надо было постараться не закалить излишне и не обезуглеродить остающиеся слои - то есть выполнять резку максимально быстро и не допускать быстрого охлаждения.
Края разлома после этого становятся неровными, да еще быстро покрываются ржавчиной - а кислород, напомню, враг хорошего шва. Поэтому края надо разделать - стесать их любым способом, чтобы они имели сравнительно ровные участки, да еще с обратной конусностью - с внутренней стороны танка разделка меньше, снаружи - больше, чтобы можно было добраться электродом до самого дна. Ну или со встречной конусностью, если броня толстая - например, на КВ, да и на Т-34 - на них V-образный шов получится слишком большого объема - упаришься его потом заваривать, лучше сделать его в проекции похожим на К или Х, а не на V. Мы делали эти работы с помощью переносных фрезерных станков - три штуки нашлись в местных депо.
Одновременно, или затем, если форма проема сразу непонятна - вырезать заготовку, которую будем вваривать, ее края также обработать - тут уже можно на стационарном фрезерном или строгальном станке - главное, чтобы они позволили закрепить такие большие заготовки, как вариант - сделать несколько заготовок, но тут уже потребуется больше швов, чтобы их потом сварить - а это и увеличение трудоемкости, и снижение стойкости брони.
Затем вставить заготовку в пробоину, прихватить ее, чтобы не вывалилась, и постепенно заполнять V- или X- или К-образное пустое пространство между корпусом и заготовкой. При этом для Х-образного сечения шва площадь сечения, скажем, для стали толщиной сорок пять миллиметров - то есть броня танка Т-34 - составит почти восемьсот квадратных миллиметров и на один погонный метр шва надо будет наплавить шесть килограммов металла. И если сваривать, скажем, электродами диаметром пять миллиметров, потребуется десять-двенадцать проходов, то есть дофига - "рука бойцов колоть устанет". А электродами диаметров шесть, семь, ну пусть даже восемь миллиметров - шесть-восемь проходов. Для КВ все эти параметры составляли десятки - что килограммов, что проходов. Вот и сидел мастер, и водил электродом по швам туда-обратно, днями и ночами. А я все подумывал - почему тут не используется автоматическая сварка - вроде бы про нее уже тут знали и применяли.
Еще в 1927 году изобретатель Д.С. Дульчевский, работавший в Одесских железнодорожных мастерских, разработал свой первый автомат для сварки под флюсом. Да и в Америке автоматическую сварку применяли уже в тридцатых годах - там сваривали трубы. Как и при ручной сварке, при автоматической надо каким-то образом подавать в зону сварки электрод и флюс. Механизм со сменными электродами по аналогии с ручной сваркой, как я понял, был слишком сложным, поэтому все работали с проволокой - она непрерывно подавалась к месту сварки. И тут проблемой становилась подача флюса. Ведь обмазать им всю проволоку нельзя - через проволоку должен подаваться электрический ток, а флюс неэлектропроводен, то есть ток пришлось бы подавать через всю бухту проволоки и, так как она имеет высокое сопротивление, то основная энергия уходила бы на ее нагрев. То есть контакты должны передавать ток на проволоку недалеко от места сварки - на расстояниях в несколько сантиметров. Был тут сделан вариант крестовой проволоки - контакты скользили по выступам, а флюс был намазан во впадинах. Тоже вариант, но в основном работали все-таки с обычной круглой голой проволокой, а флюс либо заранее намазывали на будущий шов, либо подсыпали в процессе сварки - эту технологию применял еще в 19м веке Славянов - изобретатель сварки железными электродами. В конце тридцатых и Патон наконец-то приходит к этому же решению - в июле сорокового года в его институте сварки сварили шов металла толщиной тринадцать миллиметров со скоростью 32 метра в час - в несколько раз быстрее ручной сварки. Вот и нам бы так же ... Правда, у Патона сваривали обычные стали, а не танковые, да и флюс надо будет подбирать - он отличается от флюса для ручной сварки, даже если сваривается одна и та же сталь - подробности мне пытались нарыть наши "библиотекари", а пока мы попробовали флюсы АН-1, созданный в сороковом, и ОСЦ-45, созданный в начале сорок первого - результаты были пока так себе, да и сам автомат был как бы полуавтоматом - мы пока еще не сделали автоматическое регулирование и процессом управлял сварщик.
Ну да ладно - там между делом ковырялось четыре человека, авось что-то да получится - пока мы не могли выделить больше людей на эти исследования, может - в октябре, когда поставим в строй хотя бы пятьсот танков и самоходок - можно будет и поактивнее заняться исследованиями. Там ведь еще потребуется и передвигать аппарат вдоль шва - то есть сделать какие-то направляющие, рельсы ... да и шов желательно сориентировать горизонтально, а то сейчас большинство швов - на наклонных, а то и вертикальных поверхностях - на бортах, лобовом листе, башне, а это дополнительная сложность сварки из-за наличия расплавленного металла, который сила тяжести пытается пролить через нижнюю кромку, поэтому сварщику надо следить и не допускать, чтобы его скапливалось настолько много, чтобы он смог преодолеть силу натяжения расплава ... а если шов будет горизонтально, то и выливаться металлу будет некуда ... только тогда потребуется как-то кантовать многотонные махины ... в общем - надо думать.
А пока мы могли сваривать только три погонных метра в сутки - это одна, ну, две пробоины максимум. Вот с более тонкими бронелистами было уже полегче - там и металла требуется меньше - всего полтора килограмма на погонный метр при толщине два сантиметра, и проходов - всего три-четыре штуки, причем тонкими - четыре, пять миллиметров - электродами. Тут уже могли варить менее опытные сварщики, так как не требовалось следить за тепловыми процессами на большой глубине - глубины как таковой тут, в отличие от брони сорок-восемьдесят миллиметров, и не было. Поэтому на сварке тонкой брони работало уже два десятка сварщиков, выдавая на гора полсотни метров швов, правда, в основном шли работы не по ремонту, а по установке дополнительной брони - для САУ, так как легкобронированные танки мы в основном переделывали в самоходки - уж очень была уязвима легковесовая категория на современном поле боя.
ГЛАВА 6.
Имелся тут опыт работы и не только с толстостенными сталями, но и с пружинными - как пружинами, так и рессорами - ведь рельсовый путь, каким бы он ни был стальным, все-равно имеет неровности - тут и подвижки грунта и подушки, на которой покоятся рельсы, и сдвиг рельсов вправо-влево, если балласт - как называли засыпку между шпалами - не удерживает мощных качаний составов, и рельсовые стыки, и даже износ рельсов - все это необходимо компенсировать, чтобы неровности не раздолбали паровоз и вагоны раньше времени. Так что подвижной состав - что паровозы, что вагоны - имел пружинную или рессорную подвески, которые надо было постоянно ремонтировать - мало того что ослаблялись крепления рессорных пакетов, та еще и сами рессорные листы постепенно получали остаточную деформацию и уже не могли работать эффективно, а то и просто трескались.
И ремонт деталей из пружинной стали тоже имел свои особенности. В ремонте рессор самое главное - термическая обработка - сначала отжечь с последующим медленным остыванием, чтобы снять упругость, потом выправить, и затем снова вернуть упругость - закалить, отпустить в соляной ванне, то есть ванне, где находится расплав соли при температуре примерно 450 градусов. Причем печи тут были уже не обычными, как раньше, где температуру измеряли чуть ли не на глазок, а с пирометрами и даже самописцами, которые позволяли отследить, как проходил процесс нагрева - при нарушенном режиме термообработки ставить листы в пакеты бывает просто опасно - могут лопнуть в самый неподходящий момент.
Так что народ имел опыт работы с термообработкой. В остальном-то ремонт рессор почти не отличался от ремонта, скажем, паровозных топок или котлов, разве что применялась пружинная сталь в виде рессорных листов или пружинных заготовок - порой даже в виде прутков, которые завивали уже по необходимости - под конкретную подвеску конкретного вагона или паровоза. А так, снятые для ремонта листы рессоры, если они без механических повреждений, только выправляют, чтобы восстановить нужный изгиб. Ну а если какие-то листы пошли трещинами, то их заменяют на новые - отрезают листы нужного размера от заготовок, хранящихся на складе, или же после отжига используют листы с той же подвески, более длинные, но которые имеют повреждения - лишнее обрезают, затем их гнут и проводят термообработку.
Естественно, этот производственный потенциал был нами перенацелен прежде всего на ремонт бронетехники и автомобилей. Причем наши умельцы, когда разгребли первоочередные завалы, начали проводить эксперименты по модернизации техники, и прежде всего - самоходок, у которых из-за двух-, а в последнее и время и трехслойных бутербродов из брони и бетона, существенно возросла нагрузка на передние катки. И, несмотря на требования осторожной езды, на скоростях не более двадцати километров в час, эта нагрузка давала о себе знать. Случалось всякое - прогиб балансиров, изгибы больших полуосей и стоек качающихся рычагов.
И все это наши ремонтники поначалу старательно ремонтировали - в первой половине сентября за неделю приходили в негодность как минимум четыре самоходки - хорошо хоть запас деталей был уже большим, так что самоходки быстро выходили за ворота ремонтных мастерских, а замененные детали оставались внутри для починки. Запас был большим, но не бесконечным, поэтому наши начали проводить попытки переделать подвеску с пружинной на торсионную - она обеспечивала более энергоемкий подвес при меньших габаритах, так что он умещался внутри корпуса - это хотя и усложняло ремонт, зато защищало подвеску - как от поражения снарядами и осколками, так и от природных факторов - перепадов грязи, песка, воды. Хотя бы для передних катков, нагрузка на которые при переделке из танка в самоходку возрастала существенно - дополнительный вес более толстой брони уже слишком сильно воздействовал на пружины и ходовую и те не выдерживали.
Да, мы ограничивали максимально разрешенную скорость, чтобы снизить вероятность поломки, но далеко не всегда это можно было соблюсти - не каждый мехвод способен хладнокровно выползать из-под огня, да порой это становится просто смертельно опасно - и вот - газанут, и подвеска хорошо если додержится до укрытия, а в идеале - до ремонтников, а то самоходка могла застрять и на поле боя. Так что работы по ее усилению были насущной необходимостью. Правда, сначала пытались повторять уже существующую конструкцию - пробовали ставить более толстые пружины и усиленные оси. Если с осями дело было правильным, то с пружинами пока было тяжело - длинную витую железяку не так-то просто равномерно закалить-отпустить - где-то да будет нарушен температурный режим, и пружина хорошо если сломается сразу, а не через какое-то время. Поэтому очень скоро наши начали делать попытки перевести хотя бы передние катки на торсионы.
Посмотрели, как это сделано в танках КВ, первые торсионы взяли оттуда-же - и - вуаля - три танка Т-26 с такой подвеской отбегали уже три недели, причем без поломок - ну, у одного вылетело плохо проваренное крепление. Но сама идея работала, хотя для Т-26 пришлось менять конструкцию для всех четырех катков обеих передних тележек. Так что наши сейчас пытались сварганить уже полностью свои торсионы - из местных запасов пружинной стали. Но там было много сложностей - нужна и чистая обработка поверхности, чтобы царапины не создавали концентрации напряжений, и особые режимы закалки, отличавшиеся от закалки пружин и рессорных листов, так как торсионы работали на скручивание - прежде всего своей поверхностью, и ее закалка была особенно важным моментом.
Народ работал, торсионы -тоже уже подавали надежды - сотня километров пробега без поломки была уже стабильным результатом, хотя дальше начиналась лотерея - какие-то торсионы ломались, а какие-то бегали и сто пятьдесят - больше статистики мы пока собрать не смогли, так как наши танки все-таки не делали длинные забеги, а больше паслись в позиционных районах и отстреливали периодически появлявшихся фрицев и их бронетехнику. Так что инженеры сейчас варганили стенды для проверки торсионов в заводских условиях - по нашим прикидкам пара тысяч скруток-раскруток имитировали один километр хода по среднепересеченной местности. Так что миллион колебаний - и получим статистику по тысяче километров - такой ресурс мы пока считали для себя вполне приемлемым. Если делать сорок колебаний в минуту - то потребуется всего 25 000 минут, или чуть более семнадцати суток непрерывной работы. Ничего - мы люди терпеливые. А если поставить сто колебаний - скажем, быстрая езда - то это уже семь суток. Совсем пустяк. Благо для энергетических мощностей это практически ничего не стоило - привод сделали из старого паровоза - отремонтировали топку, котел, паровую машину - и получили мощный движок, к которому подсоединяли все новые стенды - по прикидкам инженеров, мощности движка хватит на полсотни стендов, их же пока было чуть более двадцати - на пять-семь вариантов торсионов - как по их размерам, так и по способу закалки.
Так что даже уже отслужившие свое паровозы годились не только на переплавку. Но даже если все механизмы паровоза уже не было смысла восстанавливать, паровоз и тут старался сослужить службу. Ведь паровозы - "это не только ценный мех" - это еще и металл. Причем разный, полезный, и зачастую неожиданный, по крайней мере - для меня, хотя, если подумать, решения по применению выбранных металлов вполне логичные.
Например, полные силы инерции паровозного механизма достигают сорока тонн и более, и их уравновешивают с помощью противовеса, расположенного на ведущей колесной паре - там находится сплошная масса, ограниченная хордой. И если ранее это был сплошной массив из стали, то в последнее время, когда мощности, а следовательно и скорости паровозов все увеличивались и увеличивались, плотности стали уже переставало хватать для создания нормальных противовесов - просто не хватало пространства, чтобы разместить достаточный объем, а следовательно и массу, ближе к ободу колеса, а размещать много металла у оси смысла особого и не было - этот объем практически не работал. Поэтому противовес все чаще делали полым и заполняли свинцом, так как при том же объеме он был массивнее и лучше уравновешивал действующие на колесо силы.
Причем свинца требовалось много - так, на один паровоз, скажем, серии "ФД", приходилось до полутора тонн свинцовой заливки. Правда, новые - не спицевые, а дисковые колеса с прорезями - имели заливку уже под семьсот килограмм - дисковые колеса легче спицевых, так как в последних спицы требовалось делать толстыми, чтобы они выдерживали изгибающие нагрузки. Но и такие паровозы давали нам свинца на 350 000 патронов каждый, а старые - и вообще более чем на 700 000 - мы уже начинали делать пули со стальным сердечником, так что свинца требовалось пара граммов на одну пулю. Десять паровозов - и получаем в среднем пять миллионов пуль ... Или около десяти тысяч аккумуляторных элементов, хотя их мы пока набрали предостаточно - и наших, и немецких - мы так прикинули, что запасов свинца, с учетом найденного на складах и в других конструкциях, машинах и механизмах, нам хватит где-то на полтора миллиарда патронов - включая такие экзотические источники этого металла, как свинцовые кувалды, которыми в депо вбивали, например, сцепной палец в отверстие колесного центра перед запрессовкой - чтобы не повредить его поверхности. Да и после изъятия свинца паровозы еще могли работать - мы ставили чугунные противовесы и гоняли технику на более низких скоростях - чтобы такой уменьшенной массы хватало для компенсирования инерции. Тем более что изымали свинец далеко не из всех - еще и через год более сотни продолжали ездить с "родными" противовесами.
Других цветных металлов тоже хватало - баббит, свинцовистая бронза, обычная бронза - паровозы разных конструкций имели их десятки, а то и сотни килограммов, так как в них требовалось уменьшать трение при больших нагрузках и на больших площадях. Да и в депо были запасы этих сплавов на тонны - иначе как тогда без них ремонтировать паровозы ? А один паровоз - это подшипники скольжения для сотен двигателей внутреннего сгорания. Или ведущие пояски для тысяч снарядов - ну, пока мы не перешли на ведущие пояски из мягкого железа. Про собиравшийся нами лом цветмета на местах боев и разбитых аэродромах я уже упоминал.
Про стальные и медные конструкции паровозов я также рассказывал - старые паровозы серий "Щ", "Э", "С" и некоторых других - содержали одну, две, а то и три тонны меди - в зависимости от размера топок, перечня элементов, сделанных из меди, последующих ремонтов, когда медные детали и листы могли быть заменены на стальные или наоборот. А для их ремонта в депо и линейных мастерских держали сотни килограммов прутков красной меди диаметром пять миллиметров. И это еще не все вкусные вещи. Так, в новых моделях паровозов начали ставить циркуляционные трубы, обеспечивающие интенсивное перемешивание воды в котле. Трубы делаются обычно из легированной молибденом стали - на один паровоз ставится три-пять таких труб диаметром восемь-девять сантиметров - общей массой килограммов в пятьдесят. И барабаны котлов - особенно на заграничных паровозах - зачастую делали не из обычной стали, а из стали, легированной никелем. Ну, никелевой стали у нас и так было навалом - коробки танков, даже разбитых в хлам, были крупным источников качественной стали.
ГЛАВА 7.
Но все-таки - металлы металлами, а ремонтные возможности железных дорог были для нас самым ценным приобретением. Причем ремонтные возможности прежде всего крупногабаритных конструкций. Взять те же колесные пары. Я-то думал, что все они поставлены жестко. Нет. Так, у паровозов серии "Э" первая и четвертая оси - жесткие - именно они определяют положение паровоза при проходе через повороты. Вторая и пятая могут перемещаться поперек движения, тем самым приноравливаясь к поворотам. А третья ось вообще имеет колеса без реборд - чтобы сравнительно длинный паровоз мог походить повороты и ему бы не мешала середина - с ребордами эти колеса сильно бы упирались в рельс, а то и вообще наезжали бы на него ребордой. Так что колеса ведущей пары, то есть движущие, особенно на мощных паровозах, делают без реборд, чтобы уменьшить на них влияние рельсов - они просто катятся поверху, а паровоз удерживается на путях ребордами других колесных пар. Причем у разных паровозов сочетание и конструкция колес и их подвесок были различными, как и диаметр колес - бегунковые - от 760 до 1050 миллиметров, движущие у товарных паровозов - 1200-1520, а у пассажирских - 1700-1900 - эти поезда легче грузовых, поэтому могут ехать с большей скоростью, которая при той же мощности паровой машины как раз обеспечивается увеличенным диаметром. За границей новейшие скоростные паровозы получают колеса с диаметром уже 2300 миллиметров.
Колеса насаживаются на оси внатяг, с помощью прессов усилием в двести тонн - соответственно, тут имелось довольно мощное прессовое оборудование. Более того - у мощных паровозов оси делают сверлеными, чтобы облегчить вес, соответственно, тут имелись станки для рассверливания таких осей. Правда, подпольщики, например, в Барановичском депо, уже успели вывести этот станок из строя - чтобы немцы не могли ремонтировать на нем свои артиллерийские стволы. Молодцы и герои. Вот только и восстанавливать станок теперь пришлось им же. Как и несколько других станков, что они успели вывести из строя.
Но и сами колеса - не просто стальной круг. На колеса насаживаются бандажи - кольца из более прочного металла, и тоже - прессами, внатяг. Мы, кстати, стали использовать эти же прессы для смены обрезинивания катков. А так как, например на танках БТ, отказались от колесного хода, то уменьшили толщину обрезинивания - так, конечно, увеличилась удельная нагрузка на резину, зато уменьшился ее нагрев - по нашим представлениям, именно он прежде всего приводил к расслаиванию резинового бандажа. Но пока проверить это мы не могли - танки еще не наездили столько километров, чтобы сказать с определенностью.
И, возвращаясь к бандажам железнодорожных колес - так как они испытывают большие нагрузки, их прокатывают из очень твердой стали - мы очень скоро стали использовать ее даже в качестве инструментальной, да и для брони и ответственных деталей ею тоже не пренебрегали - колес тут было немеряно - тысячи, а позднее и десятки тысяч, так что на пару десятков танков с дополнительной броней и переделанных из танков самоходок можно было выделить и броню получше, чтобы в очередной раз удивить немцев убер-машиной - вроде та же, а снарядами привычно не берется - такой финт, когда внешне выглядевшее как и старое, но имеющее новые свойства, мы проделывали не раз, заставляя немцев тратить время на то, чтобы приспособиться к новым условиям боев - и каждый такой временной зазор давал нам очередное временное преимущество, которым мы старались воспользоваться по полной, пока фриц не приноровится. Так выходило потом и с "супер-танками", когда они могли подойти к фрицу на близкое расстояние и при этом оставались неуязвимы. Более того, немцы некоторое время считали неуязвимыми и остальные наши танки, что внешне выглядели так же, соответственно, фрицы раньше начинали отступать даже перед непрокачанной бронетехникой. Так что, несмотря на небольшие затраты, эффект был внушительным. Правда, производственные мощности осени сорок первого не позволяли нам делать массовый апгрейд бронетехники новой броней, хотя такой стали хватило бы и на большее количество танков - колес было тысячи, а толщина бандажа на колесах - от 75 до 100 миллиметров.
И сделано это не просто так - помимо простого качения по рельсам колеса могут и буксовать - прокручиваться, и это буксование особенно интенсивно, по сравнению с простым качением, изнашивает поверхность колеса, и без бандажа либо колесо изнашивалось бы быстрее, либо его пришлось бы делать целиком из дефицитной стали, что тоже плохо. Да и с бандажом многое зависело от машиниста - если он сначала "дождется" начала буксования, а потом еще и подсыпет песочку, вместо того, чтобы подсыпать его до буксования - тушите свет - песок начинает съедать бандаж как хороший напильник. Длительное торможение, когда машинист жмет тормоз до полной остановки - тоже ускоряет износ - металл дольше скользит, тогда как тормоза можно было бы уже и отпустить - поезд остановился бы накатом. В работе машиниста было много таких тонкостей, от которых зависит продолжительность межремонтного пробега техники.
Но даже если езда будет предельно осторожной и бережливой (это не значит - медленной, это значит - с учетом механики взаимодействия колес с рельсами), колеса все-равно будут изнашиваться, их диаметр будет изменяться, причем у разных колес одного и того же паровоза, и даже одной колесной пары износ будет свой - виляния паровоза, распределение веса на конкретные оси и колеса - все эти ньюансы оказывают влияние на износ, он получается индивидуальным. Соответственно, меняется радиус колеса, это изменение вносит новые ньюансы - паровоз начинает сильнее накреняться в сторону большего износа, сильнее вихлять.
Чтобы уменьшить эти эффекты, колеса одной колесной пары необходимо приводить к одному диаметру, а колеса разных пар - к согласованной высоте оси - какой она должна быть на разных парах, чтобы они не висели в воздухе, а принимали положенную им по конструкции нагрузку. И делают это обточкой на специальных токарных станках - в них закрепляют колесную пару и обтачивают поверхность колеса и реборду. И так как колеса могут достигать диаметра в два метра (привет любителям сказок про проблемы с расточкой башенных погонов ;) !), то станки получаются немаленькими. Шейки осей тоже могут обтачивать на этих же станках - их обтачивают, чтобы стесать изношенный металл, восстанавливают слой металла наплавкой, снова обтачивают, чтобы получить нужный размер. А для изготовления резцов используют все ту же бандажную сталь, на которую наваривают пластины быстрорежущей стали - соответственно, на деповских складах были запасы этих материалов, а в самих депо - инструментальные цеха или как минимум участки - в зависимости от объемов выполняемого ремонта. Колеса также могут ремонтировать и наплавкой - например, автоматами системы Дульчевского, фирмы AEG, Сименс-Шуккарта - в депо Барановичей и Волковыска оказались аппараты всех трех типов. В Волковысском депо был установлен еще слабый станок для обточки бандажей - работу на нем приходилось выполнять последовательно, тогда как в Барановичском станок был уже мощный, с двигателем в три десятка киловатт и более мощными станинами, выдерживавшими без вибраций большие нагрузки при резании - он позволял одновременно обтачивать боковые поверхности и гребень.
Если же ставят новые бандажи, то тут тоже есть ньюансы. Новые бандажи - напомню - это толстые кольца диаметром до двух метров - перед посадкой на колесо растачивают, чтобы учесть особенности конкретного колеса - оно могло не раз ремонтироваться, соответственно, его поверхность уже имеет не альбомный диаметр. Расточку предпочитали делать на карусельных станках, например, системы "Найлс", а не лоботокарных - установят заготовку на огромный вращающийся стол - и давай прокручивать его мимо резца. На них же обычно делают и расточку ступицы колесного центра. Новые оси также обтачивают под альбомный размер - как я понял, в депо есть запас осей разных размеров, и не всегда - нужных для конкретного паровоза - в этих случаях и обтачивают, а если требует конструкция - то и растачивают изнутри - одну из подходящих.
Правда, технологический процесс ремонта зависит от производственных возможностей конкретного депо - наличия и характеристик оборудования, а также людей, способных делать нужные виды работ. Соответственно, мы также исходя из конкретного предприятия пытались выстроить процессы ремонта танков, так что везде были свои различия, особенно поначалу, и лишь потом, по мере накопления и обмена опытом, технологии ремонта понемногу начали сближаться.
Взять хотя бы разборку. Ведь чтобы отремонтировать танк, его надо разобрать. Ну или просто снять агрегат, и разобрать его. В любом случае, требуется разборка и сборка - именно на этих технологических операциях мы набивали руку в отлаживании техпроцессов и организации массового производства, так как они требовали применения множества устройств, приспособлений и механизмов - даже гайку без ключа не открутишь, а если гаек десятки - то лучше взять гайковерт и использовать его, иначе ремонт танка растянется на очень долгий срок. Да и другие способы соединения деталей требовали своего оборудования, так что наши технологи съели не одну собаку на попытках приспособить имеющееся оборудование к требующимся операциям. А еще больше собак съели на разработке приспособлений, которые бы облегчили операции по разборке и сборке.
Например, выпрессовка и запрессовка - важный момент в ремонте танка. Втулки балансиров и других узлов, имеющих оси, сидят во втулках, которые и изнашиваются вместо металла корпуса. И чтобы их там закрепить, применяют соединение с натягом, когда вставляемая деталь - втулка - имеет диаметр чуть больше, чем диаметр отверстия, в которое она вставляется. Это позволяет создать надежное разъемное соединение, но для своей сборки и разборки требует использования прессов. Да и обточка-наплавка втулок - их внешней стороны - требует высокой точности обработки, чтобы создавался натяг не больше, но и не меньше расчетного - иначе втулка либо создаст слишком высокие напряжения в металле - как своем, так и корпуса - либо вывалится в самый неподходящий момент. Да и резиновые бандажи катков насаживаются с натягом - тоже требуется пресс. Причем посадка выполняется с разными усилиями, соответственно, для сборки-разборки соединений требуются прессы с разными усилиями - от единиц до сотен тонн, и взять, например, самый мощный и использовать его - не выход, так как это снизит параллельность выполнения работ, а наделать много мощных прессов - тоже не выход - это будет лишние затраты трудоемкости. Поэтому под каждую операцию надо подобрать свой пресс, чтобы его усилия было достаточно для ее выполнения. Да и размеры соединяемых деталей могут быть разными, поэтому для прессовки, а особенно выпрессовки, необходимо применять такие упоры, чтобы они надежно захватывали деталь и вместе с тем проходили с нею через отверстие. Пока мы вытачивали захваты и упоры под каждый конкретный узел, но уже вырисовывалась номенклатура размеров, которая позволит снизить количество видов крепежных пар. А ведь узлы, снятые с танка, надо еще подвести и укрепить на прессе - соответственно, требуются специальные подставки или стенды, рассчитанные на конкретные детали, а лучше их типоразмеры и типы конструкций - тоже предмет для технического творчества.
Разборка агрегатов требует своих приспособлений. Например, в двигателях необходимо отвернуть и вытащить множество деталей, находящихся с разных сторон двигателя - и сверху, и с низу, и с боку. Сначала рабочие и ползали вокруг двигателя, порой выворачиваясь в таких позах, что йоги, наверное, позавидовали бы. Но в недрах ремонтных бригад уже начали самозарождаться поворотные стенды, которые позволяли повернуть двигатель в любой плоскости и работать почти все время сверху, не изгибаясь буквой "зю". Пока, правда, стенды постоянно эволюционировали - то переварят крепежные трубы, то сделают их изогнутыми, иначе к некоторым точкам сборки-разборки - винтам и отверстиям - порой мешали подобраться элементы конструкции самого стенда. И ведь двигатели-то разные - соответственно, и стенды постепенно получали все большую специализацию. Да и оснастка для сборки-разборки понемногу накапливалась.
В итоге к концу сентября у нас уже скопилось множество приспособлений и механизмов для сборки-разборки танков, так что порой рабочим приходилось затрачивать много времени на изменение рабочего пространства под работу с другим агрегатом. Например, для вытаскивания двигателя требовалось залезть внутрь, отвернуть винты, подъемным краном вытащить двигатель и переместить его на стенд разборки. А затем, чтобы снять ходовую - оттащить кран, подтащить гайковерты - один, два, три - сколько их было или успели сделать, стенды для каждого колеса - и, отворачивая гайки одновременно на одном, двух, трех колесах - снять их.
И обратная сборка ходовой - это не просто "надеть катки на оси и завернуть гайки" - требуется и выровнять жесткость подвески каждого катка, отвернув-довернув регулятор каждой из пружин, в зависимости от их жесткости, и выставить катки по колее, для чего надо к каждому катку подобрать регулировочное кольцо, которое компенсирует вынос вала конкретного катка. Причем катки требовали одной оснастки, ленивцы - другой, ведущие колеса - третьей. И для каждого танка - свой набор оснастки с той или иной степенью унификации между моделями - тут работы был еще непочатый край. А ведь была еще башня, гусеницы, оружие - и для них тоже своя оснастка и оборудование.
И в какой-то момент оказалось, что проще держать группу оборудования на одном месте, а перемещать сам танк. Так у нас появился первый танковой конвейер - пока еще для сборки-разборки, но и это существенно ускорило работы по капитальному ремонту бронетехники. Конечно, его потом еще долго вылизывали, учились подбирать маршруты исходя из необходимого ремонта - ведь одним танкам требуется отремонтировать, например, только двигатель, другим - только башню или пушку - соответственно, и для разборки требуется только одна позиция, а не все - вот планировщики и решали - как пустить танки, чтобы они не ждали других. А потом ведь разобранные танки и их узлы надо откатить в сторону, на свои участки, а при сборке - наоборот - подать на участок нужные агрегаты и сам танк. Вот наши технологи и игрались в пятнашки, пытаясь составить оптимальные маршруты перемещения узлов и деталей, да еще увязать это с ритмом "конвейера" - и чтобы не было заторов, и вместе с тем по максимуму использовалось доступное пространство цехов. Правда, получалось не всегда, поэтому ряд зданий уже лишился боковых стен, к которым пристраивали еще не капитальные сооружения, а всего-лишь времянки из деревянных щитов с утеплителем - не было уверенности, что новых площадей будет достаточно и не потребуется снова перестраивать. Мы учились организации работ в цеху. Стала проявляться и специализация бригад сборки, что позволило активнее привлекать к этому делу малоквалифицированных рабочих. Соответственно, квалифицированные поднимались на уровень мастеров и начальников бригад, а кто проявлял конструкторскую жилку - делал предложения по приспособлениям, участвовал в их отладке - шли еще дальше - на обучение конструированию.
ГЛАВА 8.
А конструкторских задач, даже для такой казалось бы таких казалось бы тривиальных работ, как сборка-разборка, становилось все больше. Например, важным моментом для увеличения межремонтного пробега была правильная центровка агрегатов при сборке - если между осями были сдвиги или углы, то подшипники и зубья передач и соединительных муфт начинали работать с излишней перегрузкой на ту сторону, в которую был перекос, а при сильном перекосе их могло заклинить или они вообще могли разрушиться. Поэтому максимально отцентрировать агрегаты - это значит увеличить межремонтный пробег и вообще продлить срок их службы.
Сама центровка выполнялась внешне простыми способами. Опоры изначально, при их изготовлении, имели продолговатые отверстия, что позволяло ограниченно сдвигать агрегат, а наклон обычно регулировался дополнительными прокладками под опоры. Так поначалу и делали. Сначала установят и взаимно отцентрируют валы ведущих колес - в конце концов, от них и надо плясать, так как они тупо должны хотя бы пролезать в отверстия в бортах. Затем - установят коробку передач, измерят расцентровку с валами и начинают подгонять ее установочные параметры - то подложат под посадочные площадки агрегата подкладки с одной из сторон, то слегка рассверлят отверстие в опоре, чтобы сдвинуть коробку. Затем таким же образом ставят двигатель, подгоняя уже его под коробку. Работа долгая и кропотливая, матюгов и отдавленных пальцев - хоть отбавляй.
Но русский человек не любит однообразной работы, если только речь не идет о выживании либо о захватившей его страсти - вот тогда он готов пахать сутками напролет. А без этого начинаются "поиски разнообразия", которые могут вылиться в творческий процесс, а могут - в форменные безобразия. Вторые мы всячески пресекали, а вот первые старались поощрять, поэтому вскоре в сборочных цехах начали появляться приспособления всевозможных конструкций, чтобы сразу, без предварительной установки агрегатов, измерить расцентровку. Агрегатов было немало, моделей танков тоже хватало - для одних только коробок передач у наших получалось под двадцать приспособлений, причем некоторые дублировались - мы не сразу начали работы по обмену опытом и унификации технологии между отдельными ремонтными заводами, поэтому народ лепил кто во что горазд - в первое время мы еще только налаживали работы по обмену опытом - по заводам и мастерским ездили кураторы, которые смотрели где и что происходит, какие встречаются проблемы, где есть неиспользуемое оборудование и людские ресурсы, а где - их нехватка - и все эти сведения стекались в производственный штаб, где мы пытались их проанализировать.
Официально кураторы назывались "координаторы взаимодействия" - не инспекторы или там проверяющие - а именно координаторы - чтобы не раздражать народ очередными проверяющими, хотя по факту они в том числе и проверяли как идут исполнения принятых решений. Но все-таки основной их задачей было помочь не пустить процессы совсем уж на самотек, обеспечить руководству хоть какой-то контроль. Да и координаторов-то пока было немного, к началу сентября - всего десять человек, кто хоть как-то разбирался в производственных процессах и имел желание попарить над проблемами, а не участвовать непосредственно в их решении - не из-за балабольства, а именно из желания сделать все "как надо" на максимально высоком уровне принятия решений. Такие люди находились сами среди трудовых коллективов, когда на встречах они начинали критиковать, причем не впустую, а сразу же предлагая конкретные решения - сразу видно, что человек разбирается в вопросе и имеет желание, энергию, а, самое главное - знания, как и что надо изменить. Выдергивали, правда, пока не всех, но кандидатский резерв в полсотни человек к этим десяти уже имелся. Пустых балаболов, просто кричащих "мне все не нравится", мы тоже брали на заметку, но больше как потенциальных дураков с инициативой - на предмет задвинуть, не дать пройти наверх лишь за счет крепкого горла, ну, если не исправится после пары-тройки разъяснительных бесед. Да даже если человек знает как, но говорит лишь общими фразами - "нахер с пляжа" - пока не возьмется за ум - митинги мы и сами горазды устраивать, нам нужна конкретная работа. Молчунов, которые знали, но не говорили, мы старались расшевелить статьями в стенгазетах и боевых листках - типа "знаешь как лучше - не молчи, это не только твое личное дело, это дело всего нашего коллектива" - как-то так, тем более что так оно и было. Может, кто и примет на себя риск выставиться в неприглядном свете, если вдруг его идеи окажутся несостоятельными - тут мы подталкивали людей к активности, проводя мысль о том, что этот риск гораздо меньше риска пропустить что-то полезное, и человек должен рискнуть своим реноме ради коллектива. А потом - рискнуть еще раз. И еще, и еще - благо как правило после двух-трех попыток высказаться - неважно, удачных или нет - человек начинал приобретать иммунитет к мнению окружающих - он ведь не для себя старается, для других. Привычка - дело такое - надо лишь начать, прорваться сквозь первые тернии, а дальше уже пойдет по накатанной.
Так что, несмотря на стохастичность создания приспособлений, их применение понемногу начинало экономить время на установку агрегатов. А народ постепенно приходил к мысли, что надо бы не подгонять агрегаты по месту, а сразу делать агрегаты так, чтобы их не пришлось подгонять. Так что позднее, в конце октября, уже начинали появляться приспособления и даже специальные станки для рассверловки отверстий, дошлифовки установочных площадок и посадочных лап - конструкция станков была рассчитана на ремонт установочных поверхностей конкретного агрегата, так что вместо многочисленных замеров и подлаживания под каждую поверхность теперь было достаточно установить сам станок, и он своими тремя-пятью-десятью - по количеству поверхностей - инструментами - обрабатывал под нужный размер. Правда, вскоре оказалось, что так же надо обрабатывать и устанавливаемые детали и узлы - они ведь тоже имели свои позиции осей, отличающиеся от чертежных - пусть и на десятые-сотые миллиметра - но и эти расхождения могли потребовать установки прокладок для дополнительного выравнивания. Получалось, что спецстанки, причем согласованные между собой по отклонениям, надо делать чуть ли не под каждый агрегат, а то и деталь - наподобие упоминавшихся мною вертикально-фрезерных станков типа Рейнекер для ремонта кулис или немецких пятишпиндельных для расточки отверстий в паровозных дышлах.
В общем, народ пока усиленно чесал репу и экспериментировал - это ведь получается, что изменение конструкции деталей потребует и изменения набора станков, в плоть до конструирования новых ... ну или делать станки под класс деталей, точнее, под набор операций, требующих выдерживать четкое взаиморасположение поверхностей, которые будут обрабатываться, с ограниченной донастройкой под размеры конкретных деталей ... так-то в основном работали на универсальных станках - они позволяли обработать практически все, но требовали от рабочего точности измерений и позиционирования инструмента, тогда как спецстанки, по идее, требовали только правильной установки заготовки, то есть существенно упрощался процесс изготовления деталей. Но при этом существенно усложнялся процесс подбора и изготовления оборудования, а захочешь что-то изменить - и оборудование снова придется пересматривать и заменять - полностью либо частично - значительная часть трудоемкости изготовления переносилась с самого изготовления на подготовку производства. В общем, было над чем подумать.
Наши и думали, параллельно с отработкой приемов массового ремонта техники. К сожалению, даже если при ремонте все установили точно отцентрированным, то по мере эксплуатации центровка нарушалась - крутящий момент, передаваемый на ведущее колесо, надо чем-то компенсировать - он и компенсировался опорой двигателя - момент передавался через валы на подшипники, те - на свои опоры, те - на корпус агрегата, и уже тот давил своими лапами и площадками на опоры, установленные на корпусе танка, в котором и находился тот самый вал ведущего колеса, к которому надо было прилагать усилие - круг сил замыкался, и он должен был выдерживать все эти усилия, в идеале - без деформаций.
К сожалению, круг состоял из цепочки сочленявшихся поверхностей и массивов металла, а все эти усилия были непостояностными, меняющимися, причем часто и различно. Соответственно, упругий металл постоянно то проминался, когда усилие возрастало, то снова восстанавливался, когда усилие снималось. И так - десятки, сотни, а то и тысячи раз в секунду, причем на каждом сочленении поверхностей. Конечно, до того как дойти до опоры агрегата, эти усилия распределялись на множество промежуточных опор - валов, подшипников, которые тоже испытывали подобные нагрузки, но в итоге наступал момент, когда кристаллы во внутренних слоях опоры наконец-то продавливали своих соседей, те раздвигались в стороны - и появлялась остаточная, то есть в дальнейшем уже некомпенсируемая упругостью самого материала, деформация. Небольшая, но десятки и сотни таких микродеформаций в итоге приводили уже к заметным изменениям опор - они проминались, особенно если там были поставлены регулирующие прокладки из слишком мягкого железа. А винтовые соединения от вибрации ослаблялись, и агрегаты начинали понемногу сдвигаться в своих креплениях - срабатывало отрицательное свойство способности к регулировке - положение агрегата могло измениться и из-за таких незапланированных смещений, что лишь повышало износ - если его вовремя н остановить, процесс нарастал как снежный ком.
Так что вскоре мы ввели в текущий осмотр и проверку центровки, для чего также начали выпускать приспособления, но уже для механиков танковых частей - сначала приспособления были жесткими, рассчитанными под измерения конкретных сопрягаемых агрегатов, а потом начали делать более универсальные, позволявшие измерять углы и соосности в широких пределах, регулируя настройку с помощью раздвижных штанг и поворотных узлов. Обратным эффектом от большей универсальности, как обычно, становились и более высокие требования к персоналу - теперь ему требовалось не просто приложить приспособление и по шкале определить отклонение поверхности, но и выбрать подходящее приспособление, правильно разложить его под конкретные поверхности и оси, да при этом учесть возможные люфты в самом приспособлении. Поэтому, помимо введения административных мер по обслуживанию агрегатов, мы пытались замедлить сам процесс расцентровки - например, со второй середины сентября мы начали делать наплавку или сошлифовку опор, чтобы избавиться от прокладок, да еще делали поверхностную закалку, чтобы металл дольше не проминался, а во избежание сдвигов отверстия под винты все чаще делались жесткими, без возможности регулировки - а если требовалось сдвинуть крепление агрегата чуть в сторону, то просто заменяли крепление или заваривали старые отверстия и просверливали новые.
Система периодических замеров с применением новых измерительных приспособлений уже давала свои плоды - машины чаще отгонялись на заводской ремонт, за счет чего сам ремонт упрощался - техника просто не доводилась до цугундера, когда, поработав длительное время с рассогласованными осями, порой требовало просто замены вдрызг изношенных деталей - так, немного восстановить поверхности да соосности - и снова в бой! В общем, все как у людей - чем раньше начнешь лечиться, тем быстрее вылечишься.
Да и мехводы натаскивались не только на постоянные измерения установочных размеров, но и на отслеживание работы механизмов - мы отобрали пару десятков агрегатов - прежде всего двигателей и КПП - с уже известными повреждениями - и на этих обучающих материалах стали натаскивать людей на обнаружение повреждений по внешним признакам. Застучали подшипники ? Скорее всего - износилась посадка подшипника на валу, зазор стал выше предельного и появились биения. Но вот чтобы человек научился отслеживать такие изменения в работе механизмов, ему требовалось показать - как работает нормальный механизм, как работает испортившийся, обратить внимание на характерные отличия, чтобы он не заморачивался еще и над их поисками. И все это повторить. Раз двадцать, а лучше - сто, чтобы отложилось на подкорке, на уровень рефлексов.
Под это дело мы и развивали службу обучения техперсонала и водительского состава, причем помимо показа работы самих агрегатов мы стянули в эту службу практически все магнитофоны, какие только удалось надыбать - и оставшиеся от наших, и отжатые у немцев. Благо магнитная запись появилась еще в конце девятнадцатого века, когда они назывались телеграфонами, а в начале двадцатого тут уже был прототип автоответчика - если абонент не отвечал на телефонный звонок, звонивший мог надиктовать ему сообщение на телеграфон. А немцы с середины тридцатых уже выпускали магнитофоны на пленке из какого-то полимера - их-то мы и использовали, хотя попадались нам и магнитофоны на стальной ленте. Но качество записи на последних было очень невысоким - что-то разобрать еще можно, но стуки двигателей были плохо различимы на фоне шумов, так что их и специалист-то не всегда мог определить, что уж говорить про тех, кто проходил обучение. Поэтому для записи была применена аппаратура Барановичской радиостанции, а всего к концу сентября по частям разъезжало порядка десяти магнитофонов и столько же комплектов "испорченной" техники - так мы уже обучали не только танкистов, но и авиаторов, и водителей грузовиков.
Но прежде всего - конечно же, танкистов - я по-прежнему мандражировал насчет немецких танковых клиньев, поэтому основные усилия нашего более чем миллионного, если не двухмиллионного, сообщества старался направить именно на бронетехнику. Поэтому "концерты в стиле техно", как их называл народ с моей подачи, слушали прежде всего "погонщики брони" - мы старались нарастить массу середнячков, которые смогут выполнить боевую работу средней тяжести, без геройства - приехали, отстреляли, смотались. Были у нас и мастера экстра-класса, которые могли устроить на поле боя такие танцы, что ни одна ПТОшка по ним не попадала, максимум - вскользь по борту, а так - недолеты, перелеты, мимо. Но такие, а также танкисты уровнем чуть пониже, сейчас в основном не воевали, а занимались обучением тех самых середнячков, которых нам надо много. Очень много. Чтобы они толпой смогли забить любое количество профессионалов с той стороны. Вот на их-то обучение и тратилось магнитофонное время.
Хотя, и без магнитофонов там было над чем работать. Так, мы ввели танк называемый "блокнот давлений", в который мехводы должны были регулярно записывать показания манометров - рост или падение давления масла, или в картере - также первейший признак приближающихся неполадок - возрастающий износ, подзаклинивания, биения. Поэтому - не дай бог у кого-то были пропуски в отметках, или их значения не соответствовали тому, что показывали приборы при контрольной проверке - были и такие жулики, которые, упустив отметить в блокноте показания, записывали их как в голову взбредет. Причем некоторые, что поумнее, еще пытались указать значения исходя из динамики предыдущих, так были и такие, кто лепил что-то вообще несуразное - все-таки опытный глаз на основе показаний уже может определить дальнейшее поведение агрегата, а уж если он включался - сразу все становилось понятно. Так что таких "жульенов" дрючили втройне - прежде всего за попытку обмана своих товарищей, за то, что жизни других людей ставились в опасное положение - ведь если танк откажет в бою из-за ненадлежащего ухода, это может закончиться трагично.
ГЛАВА 9.
Но, как тщательно ни отслеживай состояние техники, она все-равно изнашивается. На деталях появляются дефекты. Механические - риски от попавших между сопряженными поверхностями твердых частиц грунта или самого механизма, вмятины от ударов, задиры от грубого контакта между поверхностями - из-за расцентровки, перегрева, а также пробоины, трещины, изломы - по тем же причинам и из-за усталости металла, когда его внутренняя структура, постоянно меняющаяся под воздействием внешних механических и тепловых нагрузок и внутренних напряжений, наконец перестраивается таким образом, что ее прочности уже не хватает для компенсации всего, что сваливается на их плечи. А тут еще и повреждения от коррозии - и ржавление, и разъедание кислотами, которые образуются при сгорании топлива, да и электрохимия не дремлет - если, например, в контакте окажутся металлы или сплавы с сильно различающимися окислительно-восстановительными потенциалами - поставят медные заклепки на стальные конструкции, да еще водичкой туда капнет - и капец.
Так что техника, какой бы она ни была совершенной, была все-таки не вечной - рабочие поверхности изнашивались, что приводило к незапланированным пропускам газов и жидкостей, а также биениям. Взаимное положение деталей нарушалось из-за коробления, скручивания, изгиба, к которым приводили механические нагрузки и тепловые режимы, расширявшие какие-то детали или их участки больше, чем другие - а все это приводило к повышенным нагрузкам, увеличению их неравномерности - рабочие поверхности начинали изнашиваться интенсивнее, появлялась и затем увеличивались овальность, конусность, корсетность, из-за чего неравномерность нагрузок еще больше возрастала - снежный ком рассогласования с какого-то момента начинал расти стремительно.
И все эти повреждения и износы надо замерить - соосность отверстий под подшипники, расстояния между осями, перпендикулярность и параллельность осей в картерах, остаточную деформацию в виде изгиба и скручивания, непараллельность и скрещивание осей верхней и нижней головок в шатунах, а в прицепных - непараллельность и скрещивание осей нижней головки и отверстия под палец прицепного шатуна. Причем, несмотря на то, что деталь изнашивается с течением времени, при очередном ремонте, в принципе, необязательно ее и ремонтировать - если ее износ к следующему ремонту еще не станет выше предельно допустимого. Так что при обследовании необходимо принять решение - ремонтировать ли ее (или вообще заменить), или же поставить пока работать дальше - от этого зависит работоспособность техники и трудоемкость ее ремонта - начнешь ремонтировать все подряд - и просто утонешь в вале ремонтных работ, а что-то упустишь - получишь поломку механизма. Так что тут надо сто раз подумать - проработает ли деталь до следующего ремонта, не износится ли выше предельного размера.
Все эти работы по определению степени износа и порядка ремонта выполнялись на этапе дефектовки деталей, и этот этап также постепенно обрастал спецприспособлениями. Сначала все нарушения геометрии мы вымеряли линейками, угломерами и штангенциркулями. Это требовало внимательности, глазомера, да и просто опыта в измерениях - квалификация дефектовщика должна быть очень высокой, абы кого на эту работу не поставишь - не забазирует правильно линейку, между ней и поверхностью окажется небольшой клин - и привет - измерения неправильны.
Но постепенно стали делать специализированные приспособления. Скажем, для проверки соосности тех же осей шатунов двигателя В-2 сделали штангу с двумя перпендикулярными ей разжимными цилиндрами и индикатором - штанга располагалась вдоль шатуна, цилиндры вставлялись в отверстия, разжимались, таким образом устанавливаясь вдоль отверстий, и верхний при установке проворачивался и двигал индикатор - тот поворотом стрелки указывал направление несоосности, и бегунком внутри стрелки - ее размер. Да, слесарям пришлось попотеть, создавая такой прибор, зато скорость дефектовки шатунов по несоосности возросла на порядок при таком же снижении требований в дефектовщику - теперь от него требовалась только старательность.
До конца года мы разработали более трех сотен видов приспособлений - не самих приспособлений, их было под пять тысяч, а именно видов ! Например, для определения конусности отверстий в тех же шатунах было особое приспособление - измеритель конусности, который, забазировавшись на поверхности детали, устанавливал губки точно по центру оси невзирая на конусность - просто дальние и ближние концы губок сходились на большее или меньшее расстояние, и измеритель конусности определял именно это расстояние - мы сначала и попытались ввести в соосник еще и шкалу конусности, но схема получалась чрезмерно насыщенной тягами - надо было бы постоянно следить за смазкой, да и сами тяги мешались установщику. Поэтому и сделали отдельный прибор. И даже несколько - под разные диапазоны отверстий. Так что со временем дефектовка все больше обрастала спецприспособлениями.
И, если при дефектовке был поставлен диагноз "на ремонт", деталь отправлялась в ремонтные цеха. Ремонт деталей мог выполняться тремя вариантами - в зависимости от детали и степени ее повреждения.
Первый способ заключался в обработке детали под так называемый ремонтный размер - с детали стачивается изношенный металл, она становится меньше альбомного, предусмотренного чертежами. И чтобы компенсировать это уменьшение, ставится новая сопряженная деталь, которая учитывает это изменение. Например, могут просто сточить часть вала без последующего наращивания его диаметра, а чтобы он не болтался - поставить втулку с отверстием меньшего диаметра. Естественно, если конструкция такое вообще позволяет. Как правило, возможность такого ремонта должна быть заложена еще на этапе конструирования - просто закладывают некоторый запас на последующие стачивания, при которых деталь еще не потеряет нужных свойств. И запасные сопрягаемые детали - например, втулки, в которые будут вставляться ремонтируемые таким образом валы, также выполняются с запасом - скажем, с отверстием минимального диаметра, который потом растачивают под конкретную отремонтированную деталь, а то и выпускают несколько втулок с отверстиями разного диаметра - под так называемые нормализованные ремонтные размеры. Изначально-то на технике стоят детали нормального размера - что вал, что втулка, а затем вал стачивают до очередного ремонтного размера - тогда будет достаточно отремонтировать только вал, а втулку под него - просто подобрать из новых, так как изготовить вал сложнее, чем втулки под него. Но это потребует держать запас таких втулок под разные ремонтные размеры, что не всегда оправданно или возможно - поэтому зачастую вал стачивают под какой-то промежуточный размер - достаточный для ремонта, а потом под него подбирают и при необходимости растачивают втулку, после чего обе детали становятся промежуточного ремонтного размера - ненормализованного, то есть не имеющегося в номенклатуре ремонтных размеров. Последний вариант может потребовать еще и подгоночных работ - точность обработки может быть недостаточной и получится недостаточный зазор или слишком сильный натяг. К тому же ремонт под ненормализованный размер может усложнить последующие ремонты. В танках под такие ремонтные размеры отведено достаточно много пар отверстие-вал - в картерах коробок передач, постели под вкладыши подшипников в картере двигателя, посадочные поверхности отверстий в ведомых шестернях КПП и т.д. - по несколько десятков отверстий на танк. А также шейки коленвала, гильзы цилиндров - но их как правило обрабатывают только под ненормализованые размеры - слишком сложные детали, чтобы держать под них большой запас сопряженных деталей ремонтных размеров.
Второй вариант ремонта предполагает, что размер детали будет восстановлен до первоначального. В этом случае ставят добавочную деталь, которая скомпенсирует обточку изношенного слоя - втулки, пластины, шайбы, ввертыши - с рабочей или обратной стороны, в зависимости от нагруженности рабочей поверхности и свойств добавочной детали. При этом изношенная деталь все-равно обрабатывается, а добавочная закрепляется либо напрессовкой, либо сваркой, либо приворачиванием. Могут и нарастить поверхность наплавлением металла с последующей обработкой под нужный размер - если механические и тепловые нагрузки позволят удержаться этой корке.
Ну и третий вариант - замена куска детали, а не его обработка - например, отрезать от вала изношенный кусок и приварить кусок нормального диаметра. Иногда такой вариант предусматривается и в самой детали - например, коленвал двигателя В-2 позволяет заменять таким образом хвостовик со шлицами. Так же ремонтируются опорные катки, потерявшие часть обода из-за попадания снарядов, выхлопные коллекторы, участки брони и так далее. Но заменяемый участок должен быть обработан и подогнан.
При ремонте надо учитывать особенности детали - конструкцию самой детали, конструкцию сопряженных с ней деталей, чтобы их поверхности работали согласованно, а отсюда - условия работы детали - механические и термические нагрузки при работе, из которых следуют в том числе требования как к термической обработке детали, так и к обработке поверхностей - чистоте, чтобы трущиеся поверхности не были шероховатыми, и вместе с тем чтобы не тратить слишком много времени на доводку нетрущихся, температурному режиму - даже если деталь не трется, но сильно нагревается, ее поверхности надо делать либо шероховатыми - чтобы интенсивнее излучала тепло, либо, наоборот - гладкими - чтобы вбирала меньше тепла - тут уже все зависело от направления и интенсивности тепловых потоков. От них же зависел и допустимый зазор между сопряженными поверхностями - он должен оставлять достаточно места на возможное расширение деталей при нагреве - поэтому надо определить максимальную температуру нагрева, из нее - максимальное расширение деталей - и будет известен зазор - без этого деталь может заклинить в самый неподходящий момент - так мы потеряли два танка - во время напряженного боя, когда приходилось маневрировать, заклинило ось в КПП, и танки встали. К счастью, экипажи успели выбраться из-под огня, пусть и все израненные. Когда мы вытащили танки, проверка и выявила по задирам заклинивание осей, а разборка и замеры деталей - отсутствие необходимого зазора после ремонта - на изношенную поверхность при ее восстановлении наплавили слишком много металла и потом несошлифовали в ремонтный размер. Механические нагрузки определяли требования к жесткости поверхности - то ли ее достаточно обработать под нужный размер, то ли еще надо проводить закалку и цементацию, чтобы выдерживала давление и износ абразивными частицами, которые могут попасть в зазор между деталями, а также износ неровностями сопряженной поверхности. При составлении технологии ремонта надо учитывать и то, как деталь изготовлялась - скажем, если какая-то поверхность была закалена, то что лучше сделать - отпустить эту поверхность, чтобы она стала менее твердой, обработать и затем обратно закалить, или же, если износ сравнительно небольшой - просто сошлифовать небольшой объем, чтобы восстановить, скажем, плоскость - и на этом закончить обработку.
Поэтому способ ремонта деталей, даже одних и тех же, но с разным износом, мог быть разным, и процесс выбора конкретного способа представлял порой довольно нетривиальную задачку, особенно если базовые поверхности были повреждены - как тогда крепить деталь, чтобы срезать только нужные объемы металла, причем симметрично и равномерно ? Поставишь криво - по неравномерно изношенным базисам - криво будет и сточено - и вместо ремонта деталь будет еще сильнее испорчена, вплоть до переплавки. А различные деформации - скручивания и изгибы - только добавляли неясности в головоломку. Тут уж все зависит от конкретной детали. Например, балансиры приходят на ремонт в том числе из-за повреждений центровых отверстий катков, которые, собственно, и являются базой. Ну, тогда уж сначала за базу берут плоскую поверхность рычага и отходящую перпендикулярно ось, причем с учетом износа оси деталь могут немного повернуть, чтобы отверстие было перпендикулярно плоскому рычагу, в этой базе растачивают отверстия, а потом отверстие становится базой - и обрабатывают ось рычага - тут уж, если из-за недостаточно точной базировки появится угол, то просто срезают больше металла и затем насаживают трубку с более толстыми стенками - главное, чтобы после ремонта ось и отверстие были соосны, иначе появится сильное боковое усилие и, соответственно, возрастет неравномерность износа - он и так будет неравномерен из-за микронеточностей в изготовлении и неравномерной нагрузки, но чем выше будет соосность, тем меньше неравномерность, и, соответственно, деталь проработает дольше и ремонтировать ее будет проще. Так что сам выбор способа ремонта был неоднозначен, но у нас хватало и других сложностей.
ГЛАВА 10.
Значительная трудность заключалась в том, что у нас не было технологических карт изготовления большинства деталей, поэтому, даже если размеры деталей мы еще как-то могли определить - например, измерением деталей на новых танках - то способы обработки и закалки приходилось придумывать самим.
Для этого пришлось выделить по одной-две детали всех типов, чтобы инженеры разобрали их чуть ли не на атомы и посмотрели структуру и состав материалов. Например, поверхность детали очень твердая - ага, проводилась закалка. А всей ли детали или только ее поверхности ? Надо делать разрез, сошлифовывать нарушенную при разрезании часть металла и смотреть его структуру в микроскоп. "Ага - структура металла у поверхности одна, а в глубине - другая, и твердость слоев различна. Ясно - закалка - поверхностная". Ну да - поверхность трется, а деталь изгибается - то есть и по параметрам ее работы необходима высокая износостойкость поверхности и вместе с тем гибкость внутренних слоев, чтобы не хрумкнула под нагрузками. Или - "Ага, деталь закаливалась целиком" - ну да, она не испытывает изгибающих усилий, зато на нее воздействует сильное однонаправленное давление - очень большое - такое может выдержать либо сильно легированный металл, либо металл с хорошей закалкой.
Химики, понятное дело, выясняли химический состав металлов - ведь от этого зависит не только режим закалки - металлы разного состава закаливаются при разных температурах и с разным графиком - для каких-то надо закалить и быстро остудить, чтобы у них не пошла перекристаллизация, а какие-то имеют узкий диапазон перекристаллизации - то есть главное проскочить его как можно быстрее, а потом можно остужать медленнее, чтобы внутренние напряжения могли лучше рассосаться - проще говоря, чтобы у кристаллов было больше времени устроиться поудобнее, не толкаться с соседями, пока окружающий металл - межзерновое пространство - еще сравнительно мягкое и податливо оказываемому на него давлению со стороны кристаллов. От состава металла зависели и режимы механической обработки - запустишь слишком интенсивную обработку - металл нагреется слишком сильно - и пошли внутренние изменения - перекристаллизация поверхностных слоев, выгорание легирующих добавок. Глаз да глаз.
Этими работами в середине сентября занималось уже шестнадцать человек ведущих специалистов - инженеров, механиков, студентов ВУЗов - к этому времени мы разгребли первые, самые важные, дела по организации ремонтных и других производств, поэтому появилась возможность перебросить на этот участок побольше народу. Им помогали порядка полусотни подмастерьев, которые одновременно одновременно проходили обучение - что называется, без отрыва от производства, и около двух сотен технического персонала - чертежники, операторы пишмашинок, разборщики, отмывщики, дефектовщики - рассмотреть потемнения от наклепа, или синеватые разводы из-за перегрева - тут нужен не только острый глаз, хорошее освещение и, желательно, оптические приборы - но и просто знание, как должна выглядеть нормальная деталь. К концу сентября эта команда вышла на уровень составления документации в три детали в сутки - понятно, что одна деталь могла исследоваться и неделю, но в среднем было так. Причем исследовали прежде всего детали двигателя, трансмиссии, подвески - то, что вероятнее всего сломается в ближайшее время. Остальное будем подтягивать по мере возможности.
Так что, хотя мы начали эти работы чуть ли не в конце июля, до их окончания было еще далеко. К тому же, даже при наличии такого реверс-инжинирига, восстановленные детали порой ломались - и надо было понять - почему. То ли мы что-то не так поняли, то ли при изготовлении были допущены ошибки, а то ли сама конструкция была кривой - если заложенные конструктором или технологом деталь и способ ее обработки - механической и тепловой - не соответствовали условиям ее работы. Так что на каждую отремонтированную деталь оформлялся паспорт, и мы следили за ее работой. Если деталь была сравнительно доступной, то есть ее можно было легко вытащить и осмотреть, то этим занимались ремонтные подразделения танковых частей. А если для ее осмотра надо было разобрать чуть ли не половину танка, то танк, отбегав какой-то период, возвращался на ремзавод - длительность периода зависела от важности, нагруженности детали, и от новизны примененной технологии. Мы следили за своими танками как за тяжелобольными людьми - внимательно разглядывая каждый "чих", выясняли детали эксплуатации - не газанул ли где мехвод сильнее положенного, или проехался по большим ухабам на недопустимой скорости - ругать не ругали, понятное дело - в бою не до соблюдения инструкций, но делали отметки о характере эксплуатации техники.
Поэтому даже не ворох - гора информации - постепенно заваливала наших ремонтников, и что с этим делать - пока было неясно. Нет, понятно, что требовалась какая-то структуризация, но по каким критериям - вот это-то и было непонятно. Что-то наши уже пытались делать в этом плане, но пока все было кусочно, урывками, несвязно - на одном заводе - так, на другом - эдак. И конференций не проведешь - времени у людей просто не хватало - пока требовалось ввести танки в работу и поддерживать их количество на приемлемом - хотя бы штук триста - уровне. Так что действовали по принципу "Работает - и ладно. Следующий !". Единственное что пока сделали - это начали вводить специализацию заводов по типам танков, чтобы хоть так - административными мерами - ограничить разнообразие вариантов. Впрочем, применять административные меры для "лишь бы хоть как-то работало" нам было уже не впервой - те же артиллеристы обучались даже не по сокращенной, а по минимальной программе, как и станочники, и минометчики, и многие другие специальности - я об этом ранее уже упоминал, так что не буду повторяться.
Постепенно мы накапливали статистику ремонтов по конкретным деталям. Так, для балансиров наиболее характерным повреждением был износ посадочных поверхностей под шарикоподшипник и под роликоподшипник, а также срыв резьбы. Во всех трех случаях необходимо сточить нарушенный слой, ну или резьбу, наплавить новый слой, обточить под размер, ну и нарезать резьбу. То есть работы практически однотипные - различается только оснастка для закрепления и обработки детали. Такие-то моменты мы и пытались сводить в группы обработки - пока больше на бумаге, для сбора статистики, из которой потом надеялись выделить какие-то законы, по которым сможем как-то - пока неясно как - изменить наши техпроцессы.
Пока же мы начинали постепенно вводить специализацию ремонтных бригад - либо по типу детали, либо по типу износа, либо по способу восстановления - пробовали различные варианты. Например, износ посадочной поверхности под сальник были чрезвычайно редки, поэтому данный вид ремонтов выполнялся учениками под присмотром мастера - на каком заводе обнаружили - там и исправляют. А так - на каждом заводе уже образовались бригады по ремонту с помощью добавочных деталей и по ремонту наплавкой - эти виды ремонтов были самыми распространенными, но применялись для разных деталей - способ ремонта зависел от режимов работы конкретной детали. Так, наплавка и сварка не подойдут для деталей, испытывающих сильный локальный нагрев - добавленный при ремонте металл имеет другой коэффициент температурного расширения, другие внутренние напряжения относительно основного металла детали и может пойти трещинами, деформироваться, а то и просто разрушиться. В таких случаях, как я писал выше, стачивают часть металла, ставят втулки, обтачивают под нужный размер - этим занимались одни бригады. А вот изношенные кулачки распредвалов, наружные поверхности опорных катков, рабочие поверхности вилок переключения передач, посадочные поверхности под вкладыши в картере, шейки осей, резьбовые поверхности валов - все это вполне можно было восстановить наплавкой и последующей мехобработкой - на этом начали специализироваться другие бригады. Да, терялась универсальность, так что пропадала возможность сманеврировать трудовыми ресурсами в случаях, когда один тип ремонтов начинал превалировать над другим. Зато, набивая руку на одних и тех же работах, люди быстрее им обучались, так что уже через пару-тройку недель человек делал ту же работу в два, в три раза быстрее, а если придумывал приспособление - то и в десять-двадцать раз. Ну, когда отладит - приспособления, повторюсь, у нас самозарождались чуть ли не по десятку каждый день, и постоянная работа с одним и тем же видом ремонта позволяла изобретателю отладить его, не бросить на полпути просто из-за недостатка фронта работ, на котором только и можно проверять свои задумки.
А вот хромированием у нас занималось только четыре человека - в Барановичах и Пинске - они занимались этим же и до войны, ремонтируя паровозы, поэтому мы пока и использовали их знания, опыт, а также находившиеся на складах в депо материалы. Этим видом ремонта можно было восстановить под нужный размер изношенные шейки под подшипники качения на шлицевых валах, опорные шейки распредвалов, шейки валиков передач - в общем, все, что имеет небольшой износ и после восстановления на токарном станке симметричной поверхности - например, цилиндричности - для восстановления размера хватит слоя хромирования в одну-две десятые миллиметра - более толстые гальванические покрытия имеют слишком большие внутренние напряжения и плохо сцепляются с поверхностью - могут просто отвалиться. В общем, ремонт этот довольно специфический, имеющий ограниченное применение, соответственно, и фронт работ по нему был небольшим. Правда, забегая вперед, отмечу, чем дальше, тем чаще наращивание мы выполняли напылением обычной стали - высокоскоростные частицы давали существенно лучшее сцепление с поверхностью - и по сравнению с хромированием, и по сравнению с наплавкой, так что технология ремонта все больше стала сдвигаться именно в этом направлении. А запасы материалов для хромирования использовали для того же напыления, но в более ответственных участках - жалко использовать дефицит для банального восстановления размеров, если можно обойтись более доступными средствами.
Были и специализированные бригады по работе на прессах. Прессы мы применяли не только для соединения деталей внатяг и их рассоединения для ремонта - они применялись и для восстановления изношенных втулок из цветных металлов - вместо того, чтобы наращивать поверхности тем или иным способом, втулку просто осаживают - в оправке или без, отчего толщина ее стенок увеличивается, а длина втулки - уменьшается. После этого достаточно ее обработать на токарном станке под нужные диаметры - и, пусть и более короткая, втулка снова идет в дело. Конструкции втулок обычно допускают три-пять таких осаживаний, прежде чем длина рабочих поверхностей становится недостаточной - пусть даже положение втулки в отверстии и можно было бы регулировать добавочными шайбами еще очень долго.
Для обработки крупногабаритных деталей также начинали создаваться специализированные бригады - из-за своих размеров и массы эти детали требовали особых способов крепления и обработки - большие массы при вращении создавали сильные моменты, поэтому их надо было либо закреплять с максимальным учетом возможных биений - и чтобы точность обработки не снижалась, и чтобы деталь тупо не вырвало из креплений или не разбило станок, ну либо обрабатывать деталь на пониженных скоростях, а чтобы скорость ремонта не падала катастрофически - применять специализированный инструмент - например, не обычный резец, который режет металл лишь острым углом, а профилированные резцы - под конкретные изгибы краев детали, или хотя бы с более широкой площадкой, чтобы срезать за один проход побольше металла - тут уже требовалось учитывать особенности металла детали - если она закаленная, то лучше ее отпустить, размягчив металл, чтобы не менять резцы слишком часто в попытках стачивать закаленные слои. Да и сами станки требовались больших размеров - так, для обточки обода танковых катков после восстановления мы задействовали колесно-токарные станки, которые имелись в местных депо для обточки колесных пар железнодорожной техники, разве что сделали специальное приспособление, чтобы можно было закрепить там каток.
ГЛАВА 11.
Развивалась и комплектовка деталей - подбор сопряженных пар по размерам сопрягаемых поверхностей, а динамических пар - по весу. Причем по размерам требовалось учесть не только сопрягаемые пары, но и всю размерную цепь в механической передаче. А то может получиться так, что отклонения в размерах для каждой пары - в пределах нормы, вот только эти отклонения - все в одну сторону, и последняя деталь уже "не дотягивается" до нужной позиции. Правда, в конструкции двигателя были предусмотрены компенсаторы - либо муфты, либо установочные кольца разной толщины, которыми компенсировали такой разнос между деталями, выдвигая оси или шестерни вправо-влево, так что, в принципе, таким образом можно было компенсировать большинство уходов размерной цепи. Вот только это требовало дополнительных трудозатрат при сборке, чего мы старались избегать.
Поэтому бригады комплектовки собирали детали в группы по отклонениям размеров, составляли карты размерных цепей и по ним подбирали детали из разных групп - чтобы одна компенсировала другую, хотя порой, при исчерпании какой-либо из групп, приходилось отправлять деталь на доработку - подточить или нарастить какой-то размер под набор деталей конкретного танка, хотя это было и нежелательно, так как приводило к простою бронетехники - ну, эту проблему мы решали тем, что постепенно формировали фонд оборотных агрегатов, чтобы перевести ремонт с индивидуального, когда деталь или узел снимались с танка, ремонтировались, и потом ставились обратно на тот же танк, на обезличенный, когда деталь или агрегат снимались с одного танка, ему тут же ставилась замена - с учетом размерных цепей ! - а агрегат поступал в ремонт, и потом устанавливался уже на другой танк. А то поначалу, при индивидуальном ремонте, танк, понятное дело, все это время простаивал. Такого быть не должно. Но на тот момент у нас просто не хватало свободных агрегатов и деталей. С конца же августа, по выходу на просторы, мы заполучили множество советской техники, оставшейся тут от недавно прошедших боев, и теперь агрегатный фонд формировался за счет танков, вообще выводимых из оборота - их мы планировали пустить в переплавку, чтобы получать броню, а их агрегаты и пополняли фонд - либо сразу, либо после некоторого ремонта - в зависимости от степени их повреждения. Да и танков, которые еще можно было отремонтировать, оставалось немало, но у нас не хватало на них сил, так что оборотный фонд рос и за их счет.
Комплектовка по весу позволяла учитывать не только допустимые отклонения веса, но и симметричность этих отклонений - симметричные детали должны "отклоняться" в одну и ту же сторону. По тем же поршням разброс по весу в одном двигателе должен был быть не более десяти грамм, а между парами шатун-поршень - не более двадцати грамм - тут уж либо подбирать, либо наваривать дополнительный вес.
Обратная сборка отремонтрированных деталей порой также была нетривиальной задачей. Так, торцовый зазор между кольцом упорного шарикового подшипника коленвала дизеля В-2 и стенкой выточки должен быть в пределах от двух до четырех десятых миллиметра, чтобы гарантировать нормальную работу механизма выключения главного фрикциона и компенсировать тепловую деформацию коленвала.
Сборка самого коленвала - еще мудренее. Ведь он не только передает толкающие усилия с поршней, но еще и проводит смазку - внутри него просверлены отверстия, по которым она подается к подшипникам вала. И в этом вале есть заглушки, которые закрывают внутренние маслопроводящие полости - так эти заглушки должны плотно прилегать к фаскам отверстий в коленвале - герметичность проверяют по краске - если посадить заглушку и вынуть ее обратно, заранее нанесенная краска должна равномерно ее прокасить - и если прилегание негерметично - заглушку к фаске притирают абразивным микропорошком. Это у нас пока мог делать только один человек, и еще двое учились у него. Герметичность прилегания гаек и болтов обеспечивается медными прокладками - и при сборке их надо не забыть установить, а герметичность резьбовых соединений - укладкой во впадины резьбы шелковой нити - другие не выдерживают той температуры, что бывает в двигателе. Потом всю эту сборку проверяют на герметичность на отдельном стенде, где во внутренние каналы подается масло под давлением, и если все нормально - затем еще продувают сжатым воздухом.
В общем, в начале и один пересобранный коленвал в сутки у нас считался за счастье, сейчас мы могли выпустить три штуки, и этого пока хватало, но вскоре коленвалы пойдут на капиталку все возрастающим потоком - первые наши экземпляры бронетехники уже изрядно поездили. Так что мы старательно отбирали новых учеников на сборщика коленвала и усиленно тренировали уже отобранных - обучать новичков будут уже они под присмотром нашего пока единственного мастера. Да и на других сборочных единицах требовалось обучение. Так, шатуны, а также полукольца подшипников коленвала, тоже устанавливают не просто так - их сначала нагревают, чтобы при остывании получился натяг. Гайки шатунных шпилек затягивают максимально равномерно, чтобы не вышел перекос и в шпильках нормально распределялись разрывающие усилия.
В общем, таких тонкостей сборки набиралось вагон и маленькая тележка. И собирали мы этот состав с миру по нитке - кто-то знает одно, кто-то - другое. А уж тех, кто это проделывал - и вообще единицы. Так что сборочная бригада дизеля В-2 была пока штучным продуктом, и ее еще следовало растить и растить. К счастью, таких дизелей у нас было немного - три-четыре сотни, да и техника - Т-34 и КВ - еще относительно новая, сколько-то времени до капиталки есть. По двигателям БТ или Т-26 тоже были свои особенности, но эти агрегаты в войсках были уже давно, так что специалистов было больше. Но и они были перегружены работой - эти-то двигатели как раз уже проработали долго, и ремонтировать их надо было много. Так что и тут мы за счет временного снижения выпуска двигателей из капиталки выделили много времени на обучение новых специалистов - надо нарастить количество ремонтников, то есть успеть пролезть во временной зазор, когда наличие еще более-менее годных к эксплуатации двигателей пока позволяет поддерживать количество танков на приемлемом уровне без ремонта, простыми заменами.
В общем, пока была возможность, ученики осваивали ремонт двигателей и создавали станочный парк и набор оснастки для ремонта. Так, притирка требовалась не только для ремонта вала - те же клапана надо притереть к седлам абразивом, замешанным на масле - вручную, а лучше на специальном станке - например, шлифовальном, для которого сделана специальная оснастка, которая и будет удерживать в нужном положении притираемые детали.
Так что после провала в бронетехнике в конце августа-начале сентября мы снова начали наращивать ее количество. Хотя, например, для обучения мехводов наши умельцы сварганили уже три десятка учебных машинок - колеса и двигатель - от мотоциклов, даже рама - из двух мотоциклов, ну еще доварены фермы, чтобы по каждому борту поместилось и третье колесо. Управление - как на танке - рычагами и притормаживанием. И вот наши будущие мехводы днями и ночами рассекали на этих машинюшках по полигонам - нарабатывали мышечные навыки работы с техникой, которая управляется не поворотом колес, а разностью скоростей хода правого и левого ряда колес. Первые модели были, конечно, кривоваты, да и танк моделировали условно - общим были только рычаги и принцип управления. Потом уже добавили утяжелители - пружины и втулки для трения - чтобы на рычагах требовалось прикладывать усилия, сравнимые с рычагами танков, и процесс на этом не останавливался - к середине сентября подобрали балласт и его размещение, чтобы смоделировать поведение реальных танков.
Но мы создавали обучающую матчасть не только для мехводов. Так, для тренировки наводчиков и заряжающих мы начали выделывать учебные снаряды - те же стальные и даже чугунные болванки, но незакаленные, для стрельбы по деревянным щитам. Хотя потом оказалось, что они неплохо работают и по немецкой технике - четверки они, конечно, не брали, по крайней мере - в лоб, а вот для единичек, двоек, и даже троек - если стрельба шла из орудий калибра 76 миллиметров и выше - была вероятность вывести танк из строя. О всяких автомобилях, даже бронированных, и не говорю - те поражались только так. Правда, проблемой становилась увеличивающаяся нехватка пороха - пока хоть как-то мы начинали покрывать только текущий расход по стрелковке, без возможности создания запасов на интенсивные бои. Да и со снарядными гильзами скоро будет напряг - пока мы еще переснаряжали те, что надыбали на складах и полях сражений, но бесконечно переснаряжать их не получится - пять, семь раз - и в переплавку.
Так что все больше учебных машин переводились на "винтовочные пушки" - мосинка или маузеровка крепились к орудийному стволу и выстрел производился из нее, хотя наводчик по-прежнему вращал рукоятки орудия, тем самым прицеливаясь и из винтовки, а заряжающему даже прибавилось работы - воткнуть в казенник учебный снаряд, сообщить о готовности, после выстрела из винтовки - открыть затвор орудия, вытащить учебных снаряд, перезарядить винтовку - приходилось повертеться. Да и наводчику прибавилось сложностей - баллистика полета снаряда и пули из винтовки - разные, поэтому ему приходилось вводить поправки в прицеливание. Зато тренировались делать это на лету. Как говорится - тяжело в учении, легко в бою. Хотя и про походы мы не забывали. Но основным были все-таки тренировки по ведению боя - на это дело выделили почти все трассирующие патроны, чтобы было видно, куда попадаешь.
Так эти ухари до чего додумались - "Раз стреляем винтовочными патронами, а танковая броня такие выстрелы держит ...". И начали они устраивать танковые бои. Учебные. Но патроны - боевые. И вертелись на полигонах - кто кого подловит. Моторесурса было жалко, но зря мы что-ли развивали ремонтные мощности ? Людей, если погибнут из-за недоученности, еще жальче. Так некоторые уже начинали навешивать броню на учебные "танки" - которые на основе мотоциклов - и пытаться воевать друг с другом понарошку на них. Правда, конструкция не всегда выдерживала новые нагрузки, да и проходимость на мотоциклетных колесах падала. Так вскоре я увидел на одном из полигонов учебную машинку на стальных колесах с широким ободом. Получалось что-то типа бронетранспортера ... хм ... интересно ...
В общем - все были при деле, причем немалом. Так еще я, в конце августа, не успев как следует наладить ремонт, уже гнал всех дальше, на следующие рубежи - тут сказывалось и немалое головокружение от успехов, и опасения, что меня выведут на чистую воду. Поэтому-то я и старался по максимуму обеспечить людей работой, чтобы было меньше возможности подумать - "а кто это вообще такой ?". Ну а если работа будет еще и полезной - так это совсем отлично - глядишь, и зачтется если что. Напомню, у нас проблемой была буксировка гаубиц МЛ-20, которых мы отжали обратно почти полтысячи штук. Для них-то и нужен был транспорт - на коняшках, конечно, тоже можно, но вот очень это медленно. А так - если удастся делать хотя бы пятьдесят тракторов в месяц - меня это устроит - скоро наступит слякоть, за ней - зима, так что если удастся накопить к весенним боям штук триста тракторов - будет просто отлично - с учетом уже имеющихся как раз обеспечим гаубичную артиллерию средствами буксировки. Благо конструкции известны, и надо их "всего-лишь" повторить. Конечно, во второй половине августа и первой половине сентября нашей основной производственной задачей было наладить массовый ремонт бронетехники, но и другие работы надо начинать - все-равно сразу все не появится - надо прикинуть, посчитать, распланировать - как раз месяц и уйдет. Минимум. Так что пусть думают.
Когда я озвучил эту идею, на меня, понятное дело, обрушился град вопросов. И первый:
- А откуда металл будем брать ? Наших доменных печей сейчас хватает только для бытовых нужд, да и металл там пока не очень ...
Но я был уже готов. Пусть идея и была святотатственной:
- Будем использовать вагоны. - а после того, как народ возмущенно отшумел, добил их. - И рельсы.
ГЛАВА 12.
И дальше выложил примерный расклад по металлу и его источникам, что были нам доступны вот почти что прямо сейчас. Так, по моим прикидкам, из рамы одного вагона получим рам для десятка тракторов. Те же теплушки имели длину рамы под семь метров, а более поздние грузовые - и все четырнадцать. Так еще могло быть и несколько балок. Так, четырехосная 60-тонная бортовая платформа Уралвагонзавода от сорок первого года выпуска имела четыре продольных и четыре поперечных двутавровых балки. Почти такими же были и четырехосные платформы конструкции тридцать второго года. А если их элементы еще и вдоль разрезать ... механики пока примеривались - как бы получше это сделать. То ли применить гидравлические ножовочные станки Минского завода "Коммунар", которые тот выпускал с тридцать четвертого, то ли бензорезами или другими сварочными аппаратами, то ли еще чем. Так что если разберем хотя бы сотню вагонов - получим рам на тысячу тракторов.
Да и в остальном чугунка была лакомым объектом для вандализма. Так, километр пути с рельсами Р50, то есть пятьдесят килограммов на метр, давал сразу сто тонн вполне приличного металла - например, 0,8% углерода, 0,4 кремния, 1% марганца - марки рельсовых сталей различались. Колесные тележки тоже вызывали нехорошие для них мысли - так, двухколесные были весом до четырех тонн, и сталь также была очень даже ничего - например, колеса делались из стали 0,6% углерода, 0,35 кремния, 0,7 марганца, 0,1 ванадия. Встречались и 0,4 углерода, 0,5 кремния, 1% марганца, 0,1 ванадия. Оси - 0,4 углерода, 0,5 кремния, 0,3 хрома, 0,08 молибдена, 0,05 ванадия, 0,3 меди.
- А последняя - по сути, пружинная сталь, так ?
- Да и остальные ... кремний-то есть ...
- Не, там же еще никель, хром ...
- Необязательно.
- А в торсионах от троек ?
- Это которые Е и дальше ?
- Да.
- Ну да - еще никель, хром. Ну - углерода 0,7, а не 0,4, кремния на одну десятую поменьше, ванадий и молибден - когда как.
- А можно переплавить ? А то у нас уже скопилось шесть троек вообще без торсионов.
- Изменить состав стали ? Да мы и этим составом можем попробовать ... тут ведь основная проблема в термообработке, шлифовке, поверхностной закалке ...
- Продумайте этот момент, ладно ? Торсионы нам не помешают, а материала можем добыть несколько тонн - осей вокруг полно.
- Хорошо. Через неделю устроит ?
- Да, вполне. Далее. Смотрите - при отходе из-под Кобрина мы сняли рельсы - причем оба пути - с участка Кобрин - Береза и Кобин-Дрогичин ...
- И я был против ! Это диверсия !!! Я обязательно доложу о Вашем самоуправстве ! - наш главный железнодорожник очень переживал за свое разрушенное хозяйство.
- Да-да, докладывайте ...
- И о нарушении работы депо !
- Хорошо ...
- И вообще - Вы ведь обещали, что рельсы пойдут на строительство оборонительных сооружений, а сейчас получается, что их вообще переплавят. И где мы потом найдем рельсы на пути ?!?
- Семен Григорьевич. Ну мы ведь неоднократно это обсуждали. - вот толковый мужик, но слишком уж ершистый. - Обстановка изменилась - на оборону мы стали выделывать бетонные блоки, да и шпалы ваши пригодились - так что ...
- Я этого так не оставлю ! Когда Красная Армия перейдет в наступление - чем мы будем перевозить для нее грузы ? А ?!? Если железнодорожное полотно разобрано на десятки километров ! И восстановить его будет не из чего !!
- Ну, ветка Барановичи-Белосток, если и ее задействовать для выплавки металла, все-равно останется с одним путем - его и переложим на место снятых путей. - не буду же я тут говорить, что наступление будет только через три года - не поймут, все ждут общего наступления уже вот-вот - немца-то остановили на Днепре, то есть совсем недалеко.
- А...п...
- Да еще и двухпутную - рельсов хватит. - добил я его. И сверху еще добавил - К тому же я ведь не предлагаю снимать с участка Береза-Барановичи-Столбцы, так как по нему-то и пойдут на Брест грузы для наступающей Красной Армии. А ведь это сто шестьдесят километров той же двухпутки - еще полтора раза по столько же, то есть еще шестьдесят тысяч тонн. И с Полесья - Дрогичин-Пинск-Лунинец-Микашевичи - тоже ничего не снимаем, а это еще сто пятьдесят километров - тоже, считай, шестьдесят тысяч тонн. Так-то, если все это снять, то с учетом кобринских участков получим сто сорок тысяч тонн. На круг. Не считая остальных участков, о которых я скажу далее.
- Н-ну ...
- А Вы докладывайте, докладывайте, а мы потом с теми кому Вы докладывали вместе и посмеемся. Вот только будет ли до смеха Вам ... ? - и многозначительно так на него глянул. Ладно, пока я ему подкинул мысль, которая успокоит его болеющую за дело душу, а заодно и дал толстый намек, что лучше бы ему лишний раз не скандалить, а заниматься делом. А сам продолжил:
- Итак, эти две ветки - длиной по пятьдесят километров каждая. Двухпутные - то есть всего восемь ниток рельсов длиной по пятьдесят километров - всего - четыреста километров рельса Р50, то есть четыреста тысяч метров - это двадцать миллионов килограммов стали. Или двадцать тысяч тонн. Или две с половиной тысячи кубометров стали - это параллелепипед со сторонами десять метров и высотой двадцать пять метров - восемь этажей сплошного металла. Представили громадину ?
Народ загудел. Так-то рельсы лежали себе тонкими нитками и глаза не мозолили. А так - "собранные" в кучу ... мы как раз проводили совещание в помещении площадью пятьдесят квадратных метров и высотой потолка три метра. Получается, это два таких помещения по основанию и восемь этажей высотой. Я и сам впечатлился, проверил свои расчеты и впечатлился снова. И у меня были еще более убойные цифры, которые я и продолжил высыпать на своих соратников:
- Только эти две ветки дадут нам три миллиона бронебойных снарядов калибром 76,2 миллиметра. Или три с половиной миллиона осколочно-фугасных снарядов. Сейчас не рассматриваю вопрос порохов и взрывчатки, только по стали. Но работы в этом направлении ведутся. Далее. Этот же объем даст нам восемьдесят тысяч квадратных метров брони средней твердости толщиной тридцать миллиметров. Опять же - пока не рассматриваю вопрос с прокатом листа. С учетом, что на одну самоходку, чтобы защитить лобовую проекцию, потребуется два листа площадью пять квадратных метров - получается, что мы можем получить восемь тысяч самоходок. Ну, столько нам не надо - две тысячи сделаем - и то хорошо. Так что если остальные три четверти этой стали отдать на снаряды - получим два с половиной миллиона снарядов - по тысяче двести выстрелов на каждую самоходку - беру поровну бронебойных и осколочных.
- Так мы всех немцев перебьем ! Считай, по снаряду на одного-двух фрицев получается.
- Конечно перебьем ! Но для этого нужна сталь ! И взять быстро и много, кроме как разобрав пути - пока неоткуда, наши собственные производства быстро столько стали не дадут. Поэтому надо разбирать и остальные пути. А именно. Если снять одну колею с участка Барановичи-Слоним - а это шестьдесят километров - получим еще шесть тысяч тонн металла. А это семьсот пятьдесят кубометров. Сняли еще ветку Слоним-Волковыск - сорок километров - еще четыре тысячи тонн металла. Пятьсот кубометров. Вот вам еще десять тысяч тонн стали. Ну или тысяча двести пятьдесят кубометров - половина от рассчитанного ранее - то есть еще тысяча самоходок и боекомплект по тысяче двести выстрелов. А еще есть участок Волковыск-Белосток - восемьдесят километров, часть ветки Белосток-Гродно - еще двадцать. То есть это уже всего на круг получается сорок тысяч тонн стали, пять тысяч кубометров - это здание двадцать на двадцать и высотой двенадцать метров - четыре этажа - сплошного металла. Конечно, тупо наращивать однотипные самоходки мы не будем - у нас ведь есть стволы зениток - что наших, что немецких. Поэтому часть металла надо пустить на прокат листов толщиной пять сантиметров - два таких листа с бетонным промежутком, да еще с наклоном, должны выдержать немецкую зенитку с километра. Пару сотен таких самоходок - и мы сможем выбивать немца на дистанциях в километр-полтора - нет у них пока танков, способных выдержать эти снаряды - ведь наша зенитка на километре пробивает броню толщиной десять сантиметров - пусть и вертикально поставленную, но у немцев и так вся броня вертикальная, и таких толщин просто нет.
- Так что же - мы сможем тут сидеть и в ус не дуть ?
- Сидеть мы не сможем, надо будет немца разбить, но чтобы это сделать - надо создавать бронетехнику. И сталь для нее надо брать из рельсов. Поэтому и выношу данный вопрос на обсуждение. Итак - принципиальных возражений нет ? - я снова посмотрел на нашего железнодорожника, но тот сидел, и даже почти не насупившись, разве что буркнул что-то типа "Под Вашу ответственность". - Конечно под мою ...
- А вот с этими пятисантиметровыми листами ... ходовая не выдержит ... да и проката выйдет поменьше - потери на угар, обрезки ...
- Ну ... пусть меньше - это все-равно перекрывает наши потребности в несколько раз. И если сделать еще один-два, ну три прокатных стана, по образцу тех, что стоят на металлургическом - мы сможем переработать этот объем за пару-тройку месяцев.
- А дальше ?
- Вы сначала это освойте ! Дальше ... дальше нам ведь доступны и другие ветки, с которых мы можем снять как минимум еще четыре раза по столько же. А если снимать и второй путь - получаем еще под сорок тысяч тонн качественной стали. Ну и ранее упоминавшиеся мною двухпутки, проходящие через Барановичи и Пинск - еще сто двадцать тысяч тонн. То есть на круг - дохрена. Пока не будем, но просто как заметка на будущее.
- А рабочих откуда взять ? Участки-то до Кобрина снимали всем миром ...
- У нас ведь есть народ из личного состава воинских железнодорожных частей, да и их техника почти вся тут осталась - они ведь уже работали по кобринскому направлению. Ну и, понятное дело - железнодорожники из гражданских. Это - костяк профессионалов. А им в подмогу ... мы ведь освободили несколько лагерей, куда собирали местных жителей призывного возраста ... ? В Слуцке, помнится, вообще под десять тысяч, да и в остальных городах еще три раза по столько же, если не четыре ... вот их пока и привлечем.
- А где мы все это будем расплавлять и перерабатывать ?
Вопросы были закономерными, и я был к ним готов - заранее нагрузил нужных людей.
ГЛАВА 13.
- Про расплавление нам сейчас расскажет наш главный топливовед Николай Кузьмич. Николай Кузьмич, прошу.
- По топливу, значить, для металлургического, значить, производства, у нас следующие обстоятельства ... - Кузьмич откашлялся, отпил воды, и продолжил вещать, а я перескажу его речь своими словами, без особенностей его произношения и построения оборотов речи - там отдельная ржака.
Литейного кокса - около двадцати тонн - это тот же доменный, только куски крупнее, а содержание серы - меньше. При удельном весе в полтонны на кубометр - это сорок кубов. И больше его поступлений не будет. Хотя нам, как я понял, не особо и надо - мы начинали выделывать древесный уголь и торфяной кокс. Причем торфяной кокс по характеристикам был почти что сравним с каменноугольным - по теплотворной способности - до 7200 и до 7000 ккал на килограмм - он даже превосходил каменноугольный - прежде всего за счет меньшего количества золы - в угольном ее было минимум девять процентов, в торфяном - тоже девять, но максимум, в среднем - пять. Летучих веществ было больше - около десяти, по сравнению с одним процентом в каменноугольном.
Для выделки кокса сейчас строятся три печи Пинча - под полное коксование - там температуры уже высокие, и надо все выкладывать шамотным кирпичом, иначе стены быстро придут в негодность.
Да, видел я эти печурки - прямоугольная шахта сечением под два метра и высотой свыше девяти метров - их как правило строили попарно, чтобы снизить потери тепла в окружающую среду и повысить эффективность топлива. Ну и сбоку - один или два рекуператора. Торф загружается сверху, спускаясь вниз, сначала подсушивается, затем проходит зону швелевания - то есть полукоксования - при температуре 500-600 градусов и внизу уже полукокс омывается газом-теплоносителем - тот охлаждает полукокс до 100-150 градусов - при такой температуре он уже не воспламеняется. Горючий газ подается в зону швелевания, а получается он в результате полукоксования из того же торфа - то есть процесс почти что замкнутый - только при запуске часть торфа сгорает без превращения в полукокс, чтобы нагреть и начать коксование вышележащих слоев. При влажности торфа тридцать процентов печь перерабатывет 50 тонн торфа в сутки, а при влажности 20-25 процентов - 60-70 тонн - чем суше материал, тем меньше энергии затрачивается на его просушку.
Из тонны торфа выходит 300-400 килограммов полукокса, который затем используется как топливо для печей - для обогрева помещений, сушильных и даже промышленных - полукокс, по сравнению с исходным торфом, практически не дает дыма со всеми его едкими и пахучими веществами, да и калорийнее, а значит меньше надо закидывать в печь, и жарче огонь, так как на тот же объем приходится больше углерода - то есть удельное содержание углерода - основного горючего - увеличивается, а всякого балласта в виде азота, а то и вообще помехи - кислорода, который так-то надо было выдавливать из торфа и тратить на это часть тепла - наоборот, уменьшается.
То есть в полукоксовании торфа - сплошная выгода, которая не исчерпывается только получением калорийного топлива. Так, из тонны торфа выходит 100 килограммов смолы, двести-триста кубометров швель-газа - смеси углекислого, угарного газа, водорода, азота, метана ну и менее процента кислорода и всяких пропанов-бутанов. Точнее, выходило два вида газа - швель-газ и шпюль-газ - правда, я забыл, чем они различаются - хотя мне и говорили, и я сам смотрел, например, в книге "Общая химическая технология топлива" выпуска от 1941го года - самый свежачок - помню только, что теплотвоная способность швеля выше, даже если полукоксование происходит при той же температуре. Ну да ладно - все-равно он сгорал - и каждый кубометр швель-газа, полученного при перегонке при 540 градусах, давал 2285 килокалорий на кубометр, а при 670 - уже 3587 - в нем было больше угарного газа, водорода и метана, а вот азота - наоборот - меньше - всего 4 процента по сравнению с 17ю при перегонке при 540ка градусах. Но тут не было никакой мистики - просто азот переходил в подсмольные воды - в аммиак - при 670градусах его было в воде 6 процентов, тогда как при 540 - меньше 4. С фенолами же была обратная картина - тринадцать и больше двадцати процентов. Соответственно, если хотели получить больше аммиака - делали перегонку при более высокой температуре, если больше фенола - при более низкой.
Но - так получали полукокс. Он был еще как-то пригоден для переплавки металлов, но не для выплавки чугуна - слишком много было летучих веществ - при высоких температурах они начинали вырываться из кусков полукокса, тот трескался, забивал промежутки между кусками руды, ток газов прекращался и выплавка затухала. Нужен был нормальный кокс, в котором было бы меньше летучих веществ. И получался такой кокс из торфа уже при температурах в в 900 градусов. Хотя, как показали дальнейшие опыты, наши просто перестраховались, и коксование нормально шло и при 800 градусах, то есть можно было бы использовать и существующие печи. Ну да ладно - выложить одну печь - это пара-тройка дней, да еще две недели на просушку. Не помешает.
Так-то коксовать можно было бы и кустарным способом - ямным, ямно-костровым, костровым, в обычных печах - без улавливания летучих веществ. Собственно, в Англии в 18м веке каменный уголь коксовали по той же технологии, по которой выжигали и древесный уголь - накладывали в большие кучи диаметром 3-4 метра - по 2-4 тонны угля, в центре устраивали канал для выхода продуктов горения, покрывали слоем земли, чтобы предотвратить обычное сгорание, поджигали - и потом четыре-пять дней следили, чтобы не возникало сильного огня и вместе с тем огонь не затухал - рабочим приходилось постоянно то протыкать шестами покрышу, чтобы усилить горение, то заделывать отверстия, чтобы его замедлить. А так как одновременно пережигалось несколько куч - люди постоянно мотались между ними, попутно вдыхая исходивший из них едкий дым. Этот способ практиковался и в первой трети 19го века, хотя уже во второй половине 18го появляются и закрытые печи для коксования. Ну а потом уж понемногу развивалось - вертикальные нагревательные каналы для ускорения процесса, рекуператоры и регенераторы для более эффективного использования тепла, механизация загрузки и выгрузки - накрутили изрядно, но все это делалось уже для повышения эффективности и, соответственно, снижения стоимости, а принцип оставался тем же самым - нагрев без доступа воздуха, чтобы удалить летучие вещества и оставить только углерод. Ну, в идеале - так-то в угольном коксе оставалось еще много чего - той же серы - до полутора, а то и до пяти процентов - в этом плане торфяной кокс был гораздо чище - серы в нем было не более трех десятых процента. По этому показателю он существенно выигрывал у каменноугольного кокса, да и по твердости кусков немного тому уступал - кокс из верхового торфа не разваливаясь выдерживал давление 60-100 килограмм на квадратный сантиметр - почти как каменноугольный, у которого эти значения были 100-150 - ну, это у литейного кокса, у металлургического же кокса - 220. Вот кокс из низового торфа был послабже - всего 40-50 килограммов на сантиметр, зато - во всех направлениях, тогда как у древесного угля сопротивление вдоль волокон - 100-200, а вот поперек - всего 10-20, поэтому его сложно было применять в больших домнах - рассыпался и забивал каналы между кусками руды. Так что торфяной кокс стоял где-то посередине между каменноугольным коксом и древесным углем - последний разве что выигрывал по сере - менее пяти сотых процента.
Отклоняясь немного в сторону, чтобы два раза не вставать, торф был для нас источником не только кокса, но и других продуктов. Так, деготь, получающийся при коксовании торфа, содержит до девяти процентов воска, до восьми - парафина, до двадцати процентов фенолов и карбоновых кислот и до двадцати процентов нейтральных масел - по этим показателям верховой и низинный торф практически не различаются. А вот асфальтенов из верхового получается максимум 15 процентов, а из низового - от 17 до 40ка. А в срединном - переходном - торфе - до двадцати процентов битумов, за счет чего он не пропускает воду и является водоупорным горизонтом. Из-за этого же он дает более высокую теплоту сгорания, а также много смол и восков. Да много чего получали из торфа - это считай что нефть, только сыпучая - даже бензин, по идее, можно гнать - в "Общей химической технологии топлива" от 1941го года описано несколько процессов получения синтетического бензина из генераторных газов, так что разберемся с первоочередными делами - попробуем.
ГЛАВА 14.
Сейчас больше всего меня заботила азотная кислота, которая нужна для выделки пороха и взрывчатки. Пока мы еще использовали местные запасы, что нашлись на предприятиях, на складах и в сельской местности - либо непосредственно самой азотной кислоты, либо азотных удобрений - разных селитр. И, хотя их и было тут десятки, если не пара сотен тонн, но когда-то они закончатся. И торф, как источник аммиака - исходного вещества для получения азотной кислоты, казался мне одним из вариантов выхода из, как я его называл, азотного кризиса.
В Советской военной энциклопедии, первые и единственные два тома которой были изданы в начале тридцатых, расход азотной кислоты по результатам Первой Мировой указывался как тонна на тонну пороха, при теоретическом минимуме в двести килограмм - проблема была в том, что кислота расходовалась не только непосредственно на нитрацию, но и вымывалась при промывке - от 11, 30, до 50 процентов, в зависимости от технологии нитрования - по методу Абеля, Нобеля или Зельвига - методы различались и количеством ручного труда - чем меньше потери кислоты - тем его больше - описание методов мы прочитали в книге "Пороха и взрывчатые вещества" от 1936го года.
Вообще в книгах было много интересных фактов. Так, в книге француза Паскаля "Взрывчатые вещества, пороха и боевые газы", написанной в 1925м и переведенной на русский язык в 1932м, была даже приведена вязкость нитроклетчатки в зависимости от возраста дерева, из которого была изготовлена целлюлоза. Так, нитровали целлюлозу из тополя, и получалось, что молодые - до четырех лет - деревья давали вязкость почти в четыре раза большую, чем старые деревья возрастом более двадцати пяти лет. А ведь от вязкости зависит возможно достижимое качество последующей обработки - прежде всего степени чистоты, то есть промывки от остатков кислот.
А так, там было написано, что из ста весовых единиц целлюлозы можно получить от 150 до 170 весовых единиц нитроклетчатки, которые превращаются в 160..180 единиц пороха - в зависимости от добавок. Правда, мы не добавляли, скажем, стабилизаторы - тот же вазелин - смесь парафинов, которые мы получали из нефти, с маслами - так-то он поглощал оксиды азота, которые постоянно выделяются из пороха при разложении нитроклетчатки, причем, смешиваясь с влагой, всегда остающейся в порохе и имеющейся в окружающем пространстве - даже гильзе - эти окислы образуют азотную кислоту, которая воздействует на нитроклетчатку и та начинает разлагаться еще сильнее - процесс все ускоряется, по сведениям из книг, нитроклетчатка могла разложиться за два-три месяца, а в замкнутом пространстве - даже загореться, а то и рвануть. А повышение температуры еще и ускоряет этот процесс - так, при температуре в 125 градусов за период в сто пятьдесят часов порох теряет половину своего веса и более шестидесяти процентов азота - по сути, становится безвредным веществом, а при 150 градусах всего за 20 часов он теряет 70 процентов веса и почти сто процентов азота - после прочтения этих фактов мне стало понятно, как именно можно испортить патроны, отварив их в воде - пусть температура и ниже, но азота в клетчатке будет уже недостаточно, чтобы порох загорелся. Вот вазелин активно и поглощает эти образующиеся окислы и существенно замедляет разложение пороха.
У нас порох использовался почти что с колес - либо на стрельбищах, либо в боях - поэтому мы упростили технологию, убрав добавление вазелина - порох просто не успеет сколько-то разложиться, хотя подразделениям и пришлось следить, чтобы патроны не протухали - в крайнем случае, если какое-то подразделение не участвовало в боях, старые патроны недельной давности сдавались обратно и шли на стрельбища, а взамен выдавались новые - конечно, морока, но и, извините, процесс смешивания нитромассы с вазелином - тоже не такой-то простой - это не ложкой помешать в стакане воды - оба вещества вязкие, даже растворенные в спирте, и мешать надо долго.
Так что технологи были очень рады избавиться хотя бы от этого процесса - они и так проводили нитрацию по меленному процессу, чтобы получить максимально чистый порох - хотя при низких температурах нитрование идет гораздо медленнее, зато клетчатка практически не подвергается гидролизу под действием кислот и соответственно образуется очень мало глюкозы и декстринообразных веществ, тогда как уже при тридцати градусах этих веществ образуется достаточно много, причем они тоже нитруются - и мало того что на них расходуется азотная кислота, так они еще загрязняют продукт, снижая его энергетику. Так что понижением температуры мы исключили еще и этап очистки от этих примесей - нам пока было важно получить хоть какой-то порох с минимальным количеством технологических процессов - а уж потом будем отлаживать более быстрые методы. В частности, эти нитрированные сахара и декстрины нерастворимы в воде, поэтому промывкой их не отделишь - надо кипятить массу в слабом растворе щелочи, чтобы омылить эти вещества - нужная нам нитроклетчатка, конечно, тоже будет омыляться, но она более устойчива и ее сохранится гораздо больше, чем этих сахаров. Так что, по сути, более медленным нитрованием мы скомпенсировали необходимость проваривать в дальнейшем нитромассу в течение 30-50 часов - так-то все-равно проваривали, но меньше время, только чтобы вымыть остатки кислот.