Случайная цитата на citaty.info - "Всегда хотел узнать, что видят во снах слепые". Это - Стив Бушеми. А он - мистер Розовый в "Бешеные псы" Квентина Тарантино. Оказывается правильный вариант произношения его фамилии - "Boo-semi" (Бу-сэми). И, оказывается, он работал нью-йоркским пожарным.
Кстати, как правильно писать пожарный или пожарник?
В "Толковом словаре русского языка" Ожегова "пожарник" - то же, что и пожарный. Но утверждают: в самом пожарном сообществе слово "пожарник" больше не употребляют. Уже много лет пожарных именуют огнеборцами. Получается Стив Бусеми работал нью-йоркским огнеборцем, который "всегда хотел узнать, что видят во снах слепые".
Гугл помог - слепые не "видят" сны. Людям, слепым от рождения, снятся не зрительные, а слуховые, осязательные и обонятельные образы. А слепые люди, которые теряют зрение в возрасте до 5 лет, обычно тоже не видят изображений во сне. Глаза их точно так же движутся, когда они проходят стадию быстрого сна, но с поправкой на зрение. Как и у зрячих! Но мне, почему-то кажется, что коли довериться Юнгу и допустить наличие у нас коллективного бессознательного, то у слепых во сне могло бы появляться dejа vu ("уже увиденное"). Это восприятие может быть вызвано не только зрительными ассоциациями, но и звуками, запахами, тактильными ощущениями. Унифицированное научное определение "дежавю": "любое субъективно неадекватное ощущение узнавания в нынешнем ощущении неопределенного момента из прошлого".
Ещё есть такой термин, как "проприоцептивная чувствительность". Это почти тоже самое, что и кинестезия - мышечное чувство, связанное с ощущением положения частей собственного тела относительно друг друга и в пространстве. Фактически у слепых это чувство развито лучше, поэтому во сне они могут находиться в состоянии постоянного совершения действия. В более широком смысле слова оба термина включает в себя также способность осознавать положение и движение тела за счёт сигналов от всех органов чувств, которые интегрируются в мозге для получения полной информации о положении тела в пространстве. Мне кажется: dejа vu - это оператор полноты информации вообще.
"Полнота" - это тоже термин. По Тьюрингу, полнота - свойство вычислительной системы, в которой возможна реализация любых вычислимых функций. Но что больше является "системой, в которой возможна реализация любых вычислимых функций"? Сон или бессознательное?
Наверно, "полное" - это такое компактное, точнее паракомпактное пространство. Потому что и то и другое, да и само dejа vu - это паранормальные явления. Кстати, сам термин придумал сто пятьдесят лет Эмиль Буарак - философ и исследователь паранормальных психологических явлений.
В математике тоже есть "паракомпактное пространство". Это топологическое пространство, в любое открытое покрытие которого можно вписать локально конечное открытое покрытие. "Открытое" - это значит: каждый элемент которого входит в него вместе с некоторой окрестностью (в метрических пространствах и, в частности, на числовой прямой). Например, внутренность шара (без границы) является открытым множеством, а шар вместе с границей - не является открытым. Вот и человек - если он "открыт", а во сне его сознание "позволяет" ощущать себя "без границы", то его сон - это система, в которой возможна реализация любых вычислимых функций.
Но, вы же понимаете, что говоря "любые" имеется ввиду "любые возможные"?
А теперь представим, что в некой критической точке сна (точке биффуркации), такая возможность появляется и в ней реализуются все возможные вычислимые функции... Вопрос в том, что реализуется "следующим"?
Приверженцы эзотерики и мистики, наверняка, свяжут это с озарением, познанием истины. Но "озарение" - это также в понятие в психологии - insight. В психотерапии инсайтом обозначают сопровождающееся прозрением и катарсисом осознание человеком причин своего состояния или проблемы. Озарение активно применяется в психодраме. А её то как раз и можно назвать путём к точке биффуркации (но не во сне). Тот, кто придумал этот метод игровой групповой психотерапии, исходил из того, что, поскольку любой человек существо социальное, группа может более эффективно решать его проблемы, чем один человек. В этом смысле и проявляется, видимо, полнота - свойство вычислительной системы, в которой возможна реализация любых вычислимых функций.
Так, что видят во снах слепые?
Допустим - "осознание причин своего состояния". В теории все следствия можно "осознать", но только не причину. Причина - это уже начало отсчета, а начало отсчета координатных прямых всегда ноль. То есть не имеет значения. Его можно только прписать условно.
Чтобы определить, принадлежит ли точка графику функции, необходимо воспользоваться основными принципами анализа функций и алгебры. Аналитический метод заключается в подстановке координат точки (x0, y0) в уравнение функции. Если после подстановки получится верное равенство, то точка принадлежит графику функции.
Допустим, что в начале координат причинно-следственной системы координат мы описывает точку. И тут нас ждёт "полная жопа" - если точка (x0, y0) принадлежит графику функции, то это значит, что при подстановке значения x0 в функцию мы получим значение, равное y0. То есть у начала отсчета нет ни сбственной причины, ни следствия из таковой - (x0, y0).
Но как же быть с "полнотой"? С понотой всех функций и всех значений её?
Всё просто. Во-первых - функциональная полнота множества функций - это возможность выразить все возможные значения с помощью формул из элементов этого множества. Во вторыз - множество функций называется полной системой, если замыкание этого множества совпадает с множеством всех функций.
Замыкает!
Замыкание?
Замыкание в том числе логических операций с теми или иными значениями.
Вот такую операцию со значением (значениями) (которое (которые) замыкает (замыкают)) и видят во сне (да и не только слепые), получая в конечном итоге "систему, в которой возможна реализация любых вычислимых функций".
В общем случае замыкание операций - это минимально возможное (то есть не содержащее других подобных) расширение заданного множества, в котором любое применение этих операций к элементам такого расширения не выходит за его пределы.
Минимально возможное (то есть не содержащее других подобных) расширение?
Это некая групповая операция. Если это значение, то оное является подмножеством любого другого значения. И оно замкнуто. При этом существование в данном случае алгебраического замыкания существенно зависит от аксиомы выбора, которая требует отказаться от всех других аксиом. Если это отношение, то оное является подмножеством любого другого отношения. И оно строго говоря не симметрично, не рефлексивно и не транзитивно, т.е не имеет отношения с собой, с другими и с Третьим.
А что же это тогда?
Назовём это оператором замыкания. И примем во внимание, что это не определяется ничем другим. Это - сущее, само по себе и определяется только самим собой, как Господь Бог. Разве что это может быть и глобальным "Господом Богом" и локальным (месным божком, если хотите). Другой пример (из универсальной логики) - примером замыкания является оператор следствия. Речь тут - о т.н финитарном замыкании на множестве высказываний. Хотя в настоящее время термин "оператор следствия" может применяться не только к финитарным операторам; в таком случае, если оператор всё же удовлетворяет условию финитарности, о нем говорят как об операторе конечного следствия . И если речь - об операторе конечного следствия, то речь - об операторе, который может быть переведен на конечное множество символических суждений , начинающихся с конечным набором аксиом, последняя из которых - аксиома выбора, применение которой, если разбираться внимательно, имеет "чудовищные" последствия для нас привыкших мыслить так как привыкли. Объясняю:
Аксиома выбора утверждает, что, если существуют два множества (например решений), то существует и множество, содержащее ровно по одному элементу из обоих. Если одно из этих множеств содержит только один элемент, то он всегда и будет выбираться и работать как крючок, "выуживая" из второго множества элементы. Это типа как Добро и Зло в одном флаконе.
Возможно ли это?
А почему нет-то?
Не придавая значения Добру и Злу! "Не суди!" - знакомое святое благовествование?
Вот!
Вроде бы приведён пример, однако!
Однако я же говорил, что Аксиома Выбора известна тем, что рождает чудовищ. Чудовища называются intangibles - объекты, существование которых может быть доказано, но ни один конкретный пример не может быть приведен.
Улавливаете в чём фишка?
Это был не конкретный пример, а абстрактный.
Ну ладно еще глобальный абстрактный пример, в рамках которого можно представить, что тот же Замысел Божий станет известен только на Страшном суде, а как же тогда с локальными конкретными "Замыслами".
А вот давайте разрежем глобальный Замысе Божий на отдельные кусочки - отдельные "Замыслы".
Поскольку всё у нас - сфера, то и моделируем на сфере...
Сферу можно разрезать на шесть частей так, что после поворотов из них можно слепить две сферы такого же диаметра - без зазоров и пустот! "А откуда же взялся лишний объем?" - спросите вы.
О!
Для того, чтобы вычислить объем, объект должен быть в какой-то степени гладким. Части в данном случае бесконечно сложны по построению, и их объем неопределен. А как безобидно все начиналось!
Разумеется, многим математикам такое поведение Аксиомы Выбора пришлось не по вкусу. Но это - их проблема. Проблема вовсе не в аксиоме выбора, а в сознании. Человеческий мозг может работать с конечным количеством информации. Всё что не помещается - игнорируется.
Но зато теперь то мы знаем откуда у нас Божий Замысел, а откуда - свой. Ни тот ни тот - просто не определен. Это вид предела.
И что же проиходит при раскрытии неопределенности предела, значение которого не может быть определено?
В системе, в которой "рулит" зеркальная симметрия, на самом деле, есть две опции. Первая - возвращение в начальное состояние (условно в Божий Замысел), а вторая - качественно новые решения, которые будет квазирешениями, так как у них будет квазипоряок, то есть буквально это будут упомянутые выше intangibleз - "объекты, существование которых может быть доказано, но ни один конкретный пример не может быть приведен". И как и прежде, речь будет о множестве, содержащее ровно по одному элементу из обоих. Если одно из этих множеств содержит только один элемент, то он всегда и будет выбираться и работать как крючок, "выуживая" из второго множества элементы. Это типа как Добро и Зло в одном флаконе. Но это будет локальный оператор следствия. Который в рамках одного обьекта утверждает, что если в начале выбираешь Одно, то в конце будет другое. Если вначале выбрано родится человеком, то...
Потом - родишься...
Ни лягушкой, ни квакушкой, ни неведомой зверушкой...
Ну не чудовищно ли?
Но поверьте, не всё так плохо. Просто надо дождаться конца рассуждений.
А то, что сказано выше - это надо принять. Такой уж оператор замыкания в этом мире! Может в другом он окажется иным. Но в этом - локальный выбор всегда содержит вилку: чем лучше в начале, тем хуже в конце, или наоборот. Так вот поскольку мы пришли ранее к выводу, что проблема совсем не в аксиоме выбора, а в нашем сознании и наш мозг может работать только с конечным количеством информации - этого количества информации достаточно, чтобы охарактеризовать элемент из бесконечного, но счетного множества элементов, то считает он не значения, а их степени. В том же "конечном" флаконе Добра и Зла их две - максимально Добра и максимально Зла. Одно из двух. И поскольку значения не имеют "значения", то его имеет просто порядок следования от Добра ко Злу или от Зла к Добру. Тот же алгоритм следования от рождения к смерти. "И от смерти к рождению" - допустите вы?..
И будете правы. Ведь я же говорил, что Аксиома Выбора известна тем, что рождает чудовищ, называемых intangibles - объектами, существование которых может быть доказано, но ни один конкретный пример не может быть приведен.
Почему?
Во-первых, даже не сомневайтесь. Тот же вывод следует из доказанной теоремы. Эта Теорема Пуанкаре о возвращении - одна из базовых теорем эргодической теории. Её суть в том, что при сохраняющем меру отображении пространства на себя почти каждая точка вернётся в свою начальную окрестность. Допустим, человек помер. Его сожгли, развеяли, отвезли прах на Луну или прикопали, следствие этой теоремы - через некоторое время почти каждая точка бренного тела вновь соберутся в исходном обьёме. Парадокс? До тех пор, пока мы рассматриваем его в значениях. Разгадка этого парадокса в том, что "некоторое время" очень велико. Наш мозг такие значения не приемлет. А "почти каждая точка" означает, что в самом идеальном случае не вернётся только начало отсчёта, в менее "идеальном" не вернутся локальные начала отсчёта. То есть условно говоря, сборка приведёт к сборке не нашего тела, не с нашими шестью чувствами. А как эе тогда мы будем выглядеть?
Вспоминаем intangibles - объекты, существование которых может быть доказано, но ни один конкретный пример не может быть приведен.
Такие "чудовища" существуют, но существуют и имеют своих представителей на тонкой пленке счетных множеств. Мы видим эти сущности "на поверхности" и нам хорошо, если это принимаем. Более сложные сущности могут прятаться глубже - на уровне континуума и еще глубже (парадокс Банаха Тарского). У таких сущностей нет представителей в тонкой пленке счетных множеств (а собственно, почему они всегда должны там быть?) - но это исключительно наши проблемы!
Парадокс Банаха Тарского - суть его объясняет святое благовествование "Не суди" и заключается в том, что в трёхмерном пространстве существуют неизмеримые множества, которые не имеют объёма, если под объёмом мы понимаем то, что обладает свойством аддитивности, и предполагаем, что объёмы двух конгруэнтных множеств совпадают.
А теперь - обещанное четыремя параграфами выше.
Вспоминаем про флакон у которого две стороны, и который указывает на то, что если ты начал с одной стороны, то кончишь с другой. Если начал с человеческой сущности и твой мозг содержит конечное количество информации, то кончишь сущностью с "абсолютным разумом", содержащим содержит бесконечное количество информации.
Что я говорил?
Неплохая преспектива, а?
И если начал с точки отсчета, значение которого равно 0, то через некоторое время почти каждая точка бренного тела вновь соберутся уже не в исходной точке, а в исходном обьёме. Воссоединение с Оператором конечного следствия (называйте как хотите - хоть скрепка, хоть Бог, у меня это Оператор конечного следствия) - оператором, который может быть переведен на конечное множество символических суждений, начинающихся с конечным набором аксиом, последняя из которых - аксиома выбора, которая отменяет все предыдущие аксиомы. Парадокс Банаха Тарского этим intangibles не кажется парадоксом. Идея им вероятно интуитивно понятна, хотя пример они по прежнему привести не смогут.
А теперь я хотел бы перефразировать цитату, с которой начал это эссе "Всегда хотел узнать, что забывают во снах". Ведь следствием условия "полноты" является забывание второго неизмеримого значения выбора.