Аннотация: Исследуются когнитивные аспекты науки и научной деятельности в контексте развития современной философии науки. Предназначено для широкого круга читателей, интересующихся философскими проблемами развития современной науки.
Метод и творчество. Динамика науки
ФЕДЕРАЛЬНОЙ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
В.Г. ЛЕВИН
Г.В. БАРАНОВ
МЕТОД И ТВОРЧЕСТВО.
ДИНАМИКА НАУКИ
Самара 2006
УДК 1 (075. 8)
ББК 87 я 73
В.Г. Левин, Г.В. Баранов. / Метод и творчество. Динамика науки / Самар гос. техн. ун-т. Самара, 2006. 163 с.
Исследуются когнитивные аспекты науки и научной деятельности в контексте развития современной философии науки.
Предназначено для широкого круга читателей, интересующихся философскими проблемами развития современной науки.
ISBN 5-7964-0891-7
Печатается по решению редакционно-издательского совета Самарского государственного технического университета
Рецензент д-р филос. наук Т.В. Борисова
ISBN 5-7964-0891-7 No В.Г. Левин, Г.В. Баранов, 2006
No Самарский государственный
технический университет, 2006
ВВЕДЕНИЕ
Сегодня вновь актуален философский дискурс в освещении проблем развития науки. Остро ощущается потребность во внятном проговаривании мыслей о сущности науки и научного познания, о движущих силах их развития, о статусе научного творчества, о глубинных преобразованиях научного метода. Речь идет о новом прочтении оснований научного познания, о смене вех, по которым выверяются пути научного прогресса.
Современное бытие науки сталкивается с глубинными культурными изменениями, происходящими в обществе. В этом процессе преобразуются взаимоотношения между ведущими элементами культуры, в том числе между наукой, философией, религией, моралью. Изменения касаются также обширного поля современного образования. Значительные перемены происходят в области методологии и в мировоззренческих основаниях науки.
В предлагаемой работе отмечается изменение статуса научного метода, а также формирование неизвестного ранее контекста применения научного метода, что связано с переменами предметного поля научной деятельности и возникновением новых масштабных задач, которые способна решать современная наука. Главный поворот, на который обращают внимание авторы предлагаемой работы, связан с разработкой творческой составляющей метода и с развитием творческого потенциала науки. Именно этот потенциал лежит в основе динамического роста научного знания и составляет мощную детерминанту научной революции XX в.
Последовательная проработка этой идеи выдвигается в качестве значимой задачи современной философии науки и методологии научного познания. Серьезный вклад в ее разработку внесли X. Гадамер, К. Поппер, И. Лакатош, Э. Кассирер, М. Полани, а также отечественные исследователи Я.Ф. Аскин, В.Б. Устьянцев, М.А. Розов, В.И. Метлов, А.Н. Суворова, В.П. Кохановский, С.Ф. Мартынович и др. Авторы предлагаемой монографии обозначили собственный подход к исследованию указанной проблемы в ранее опубликованных материалах, в том числе в коллективных сборниках научных докладов: «Проблемы творчества» (2004), «Творчество: стратегия XXI века» (2005), «Инновации. Наука. Образование» (2006). Его главные составляющие могут быть определены следующим образом: 1) творческий характер научной методологии детерминирует вектор динамической изменчивости современной науки; 2) инновационная научная парадигма связана с системной методологией, которая сформировалась в рамках синергетического направления развития современной науки; 3) научный метод в разных аспектах своего содержания детерминирует и управляет инновационной деятельностью, обеспечивающей путь открытий в науке и в научно организованной практике.
1. ВИДЫ ПОЗНАНИЯ
Приступая к раскрытию познавательной деятельности в науке, надо отметить, что существуют различные виды познания, такие как научное, обыденное, художественное, философское, религиозное, мифологически-магическое, моральное, паранаучное. Указанные виды можно разделить на две большие группы. Первую составят преимущественно аксиологически ориентированные виды познания - религиозное, художественное, моральное, мифологически-магическое, которые обладают ярко выраженным ценностным содержанием, тесно связаны с проблемами человеческого существования, служат для выражения и обоснования идеалов человека. В другую группу входят наука, философия, обыденное познание. Они используют рациональный подход и логические средства постижения действительности. Правда, существуют философские направления, которые сознательно стоят на позициях иррационализма (философия жизни, экзистенциализм), часто смыкаются с религией, мифологией, художественным сознанием. Однако и в этом случае философы не могут полностью покинуть почву рациональной, логически обоснованной аргументации, отказаться от парадигм исследовательского подхода, от теоретического анализа, без которого они рискуют оказаться бесповоротно за пределами философии.
Промежуточное место среди видов познания занимает паранаука. Ее представители объявляют себя подлинными учеными, новаторами в области науки. Нередко они сравнивают себя с профессионалами в области конкретных наук, оспаривают истины, добытые представителями академической науки, называют ученых ретроградами. В то же время по характеру своей деятельности, по системе аргументации этот вид познания находится в сфере мифологии и магии (уфология, физика веры, физика бога и пр.).
Для наших целей важно сравнить входящие в рациональную группу науки с философией и обыденным познанием. Напомним, что познавательный цикл философии в отличие от научного сводится к совокупности теоретических исследовательских процедур, эмпирические же познавательные процедуры, например, наблюдение и эксперимент, не имеют самостоятельного значения в области философских исследований, поскольку философия оперирует средствами теоретического анализа и разрабатывает обобщенные концепции знания. Напротив, научный познавательный цикл включает в себя и теоретические, и эмпирические исследовательские действия, предполагает их тесную связь и взаимодействие. Кроме того, в отличие от философского качественного анализа, научный познавательный цикл, подчиняясь критерию точности и строгости, использует математический аппарат, измерение, и потому включает и качественный, и количественный подходы.
Стоит также отметить специфику познавательных циклов научного и обыденного познания. Сегодня широко признается фундаментальная роль, которую играет обыденное познание не только в системе человеческого познания, но и в культуре, среди совокупности видов человеческой деятельности, в жизнедеятельности всего общества. Фундаментальность обыденного познания состоит, прежде всего, в том, что оно является необходимым элементом самой широкой и важной сферы общества, а именно практики, которую надо понимать как изначальную активность в трудовой области, как социальную, культурную деятельность, как деятельность общения, образования и т.д. Обыденное познание есть исторически первый познавательный опыт человека, человечества. Это познание осуществлялось уже на древних стадиях формирования человеческой культуры, сознания, мышления, на заре эпохи антропосоциогенеза. Оно было неотъемлемой предпосылкой, условием формирования человека, его сознания и культуры. Наши предки, обезьянолюди (питекантроп, синантроп, неандерталец) занимались двумя основными видами трудовой деятельности: 1) собирательство, охота, рыболовство и 2) изготовление орудий труда. Заметим, что овладение орудиями труда было растянуто на многие тысячи лет. Этот процесс составил длинный путь развития, начиная от примитивных каменных рубил, скребков, дубин и кончая сложными многосоставными орудиями, в том числе каменным топором, луком и др., которые появились только у человека разумного.
Важно и другое обстоятельство. Практически взаимодействуя с природой и иными людьми, формирующийся человек познавал мир, определял, например, что это растение съедобное и вкусное, а другое - несъедобное и ядовитое, что этот камень подходит для изготовление рубила, а этот - нет. Тем самым обыденное познание включалось в структуру практики, подчинялось общим задачам практики. По существу, весь объем и содержание получаемых человеком знаний зависели от практики. Но поскольку практика охватывает фактически все главные сферы человеческого существования, постольку обыденное познание обладает весьма широким объемом, дает знания самые разнообразные о самых разных явлениях действительности: о природе, общественных явлениях, человеке, его здоровье, психике, культуре, приемах осуществления практической и познавательной деятельности и т.д. В частности, важное место в нем занимают гак называемые рецепты, закрепляющие опыт практической и познавательной деятельности, а также разного рода моральные наставления, табу, ритуалы и пр., относящиеся к социокультурной сфере, фиксирующие опыт общественной, культурной жизни людей. Обычно эти рецепты хранились в секрете от непосвященных, посторонних и передавались устной традицией от поколения к поколению, от учителей к ученикам.
Рецепты упорядочивали человеческую деятельность, благодаря им она становилась достаточно точной и строгой; они включали в себя специфическое, т.е. учитывающее особенности того или иного вида деятельности, относительно точное знание. В них содержалось описание начального состояния предмета, орудий, необходимых условий труда, требования к конечному продукту труда, а также к характеру и последовательности трудовых операций. Трудовой рецепт представлял собой своего рода инструкцию, алгоритм, включавший строгие и точные, рациональные предписания, на основе которых и осуществлялась та или иная трудовая деятельность. Благодаря рецептам у человека появляется возможность контролировать свои действия в процессе труда, проверять используемые знания, формировать и совершенствовать рациональную сторону своей жизнедеятельности.
Фундаментальность обыденного познания находит свое выражение в грандиозности результатов, полученных им за тысячелетия истории развития людей. К подобным результатам относятся навыки и умения по изготовлению и совершенствованию орудий труда; использование огня, в том числе и для приготовления пищи; приручение диких животных; окультуривание дикорастущих растений; выведение новых сортов растений и пород животных; создание гончарного производства; возникновение металлургии, народной медицины и т.д.; в числе творческих достижений обыденного познания находятся парус, колесо, водяная и ветряная мельницы и др.
Несомненно, что обыденное познание послужило той почвой, основой, на которой возникла впоследствии наука. Дополнительным условием для этого явилось глубинное разделение общественного труда на умственный и физический, появление социального слоя людей, которые могли систематически заниматься умственным трудом. Опыт подобного труда был накоплен на протяжении тысяч лет, когда человек непосредственно познавал природу, действительность, общество, самого себя, причем рациональными средствами, опираясь на собственный разум. Наука как раз и возникла, использовав этот опыт рационального познания. Иными словами, обыденное познание на ранних стадиях развития человеческой культуры, несмотря на доминирование мифологически-магического мышления, сформировало рациональные предпосылки последующего возникновения науки и философии. Обыденное познание сохраняется и в последующих обществах, дополняется новыми видами познания, сосуществует и взаимодействует с ними. Кроме того, обыденное познание развивается вместе с обществом. Теперь уже большое влияние на него оказывает возникшая и развивающаяся наука. Очевидно, например, что обыденные знания первобытного человека и наши обыденные знания, опирающиеся на достижения науки и современной культуры, существенно отличаются. Тем не менее, и в современном обществе обыденное познание, будучи включенным в разнообразные связи и отношения со всеми элементами культуры, общественной практики и самим человеком, продолжает играть фундаментальную роль.
Сравнение обыденного и научного познания может быть осуществлено через сопоставление их основных элементов.
Объект познания. Если в науке для выделения объекта исследования необходимы определенные логические и теоретические предпосылки (выбор объекта определяется общим состоянием научного знания и научных методов, исключительно важна при этом роль научной теории, которая детерминирует не только выбор, но и формирование объекта), то в обыденном познании объекты выделяются на основе практики, традиций культуры, например, земледельческих, скотоводческих, торговых и т.п. Объектом обыденного познания становится то явление, вещь, которая непосредственно вовлекается в процесс трудовой деятельности или социальной коммуникации. Обыденное познание не вырабатывает специальных логических, гносеологических критериев выделения и изучения объекта. Как и само обыденное познание, являющееся моментом, причем подчиненным, практике и осуществляющееся попутно, так и объект познания выделяется попутно, т.е. не на основе целей познания, а на основе целей практики.
Субъект познании. В качестве субъекта обыденного познания выступают все люди, занимающиеся той или иной практической деятельностью; для обыденного познания нет проблемы приоритета, знание там анонимное, носит коллективный характер, отсутствует индивидуальное авторство; люди здесь не встречают никаких специальных критериев или требований, хотя имеет место определенная специализация и даже закрытость, например, в сфере ремесленной деятельности, когда секреты ремесла тщательно скрываются от непосвященных и конкурентов.
Научное же познание - это занятие специальной категории людей. Оно требует длительной профессиональной подготовки, а также особых, вырабатываемых в ходе исторического развития науки организационных форм. Известны, например, школы Платона и Аристотеля в античности (академия и лицей), в какой-то мере средневековые университеты, алхимические лаборатории, в XVII веке и далее - обсерватории, академии, лаборатории, научно-исследовательские институты и т.д.
Результат. Знание, получаемое в обыденном познании, можно сказать, весьма разнородно, относится ко всем сферам бытия (природа, человек, общество). Отсюда оно логически не может быть упорядочено, в нем невозможно установить отношения логической выводимости, да и такой задачи там не ставится. Кроме того, обыденное знание носит в основном эмпирический характер, относится лишь к тем явлениям действительности, которые вовлечены непосредственно в практическую деятельность людей, т.е. подобное знание обслуживает главным образом практику. В обыденном знании содержатся различные обобщения эмпирического характера, например, приметы погоды, обобщающие вековые традиции наблюдений климатических погодных процессов, представления о здоровье, болезнях человека и способах их лечения и т.п. В целом обыденное познание остается на уровне описания феноменологического слоя действительности, в лучшем случае оно включает в себя некоторые теоретические положения, заимствуя их извне - из науки, религии и т.п. То есть в обыденном познании дается описание главным образом явления, а не сущности. При этом надо различать эмпирическое обыденное знание и эмпирическое знание в науке. В отличие от обыденного эмпирическое научное познание и соответственно знание есть познание строго специализированное, основанное на особых научных критериях и требующее специфических методов, познавательных средств, приборов и т.д., оно получает свое обоснование в рамках всей системы науки.
Если обыденное знание остается на уровне явления, то наука имеет все возможности достигать не только знания явления, но и сущности. Иными словами, наука исследует не только внешний, феноменологический, но и внутренний, сущностный слой действительности, отсюда научное знание в сравнении с обыденным содержит более глубокие и обоснованные истины. Характерной чертой науки является критичность, рефлексия по отношению к собственной деятельности, постоянный критический пересмотр результатов, целей, средств и т.д. В науке всякое знание принимается как результат основательной критической проверки. Поэтому наука, располагая знанием сущности, совершенствуя с помощью самокритики свой познавательный потенциал, получает возможность не только описания, но и объяснения действительности. Обыденное же познание действует в основном по традиции, установленным образцам, рецептам, стереотипам: оно не ставит специальной задачи критической рефлексии и совершенствования своих познавательных средств.
Если обыденное познание и соответственно знание представляет собой неспециализированное, в основном аморфное и по составу, и по упорядоченности, системности отражение действительности, то научное познание есть прежде всего специализированная деятельность, которая подчиняется важнейшему требованию - критерию упорядоченности, системности. Вообще, научное познание осуществляется на основе целой совокупности логико-гносеологических критериев научности, например, можно назвать истинность, проблемность, предметность, обоснованность, интерсубъективную проверяемость, системность, непротиворечивость, выводимость и др. Разумеется, не может быть речи об абсолютном противопоставлении, взаимном исключении обыденного и научного познания с точки зрения их упорядоченности, поскольку и то, и другое представляет собой разновидности общего процесса познания человеком действительности. Тем более что систематизированность научного познания также нельзя представлять как нечто абсолютное, завершенное. Так, в сфере научного знания, где наукой выработаны весьма сильные логические, методологические средства систематизации, не достигнута и не может быть достигнута абсолютная согласованность, понятий, теорий, гипотез и т.д. даже в рамках какой-либо одной дисциплины. Еще более «свободная» связь существует в системе собственно процесса познавательной деятельности. Однако если в науке выработаны определенные требования к правильности реализации научного подхода, если в ней исследование опирается на критерии научности, то обыденное познание не обладает какого-либо рода средствами упорядочения, систематизации, поскольку осуществляется как подчиненный практике момент, как процесс побочного, попутного получения знаний. Весь тот уровень организованности, системности, который может быть в обыденном познании, определяется не внутренними требованиями этого процесса, а задачами, ограничениями, стимулами и т.д. практики. Иными словами, систематизирующие факторы находятся не внутри, а вне обыденного познания; в нем в отличие от науки не развита специальная упорядочивающая методологическая деятельность, не развит рефлексивный управляющий уровень.
Процесс. Обыденное познание можно охарактеризовать как простой кумулятивный процесс, в ходе которого происходит постепенное накопление, а зачастую и утеря (утеряны, например, рецепты производства булатной стали, знаменитых скрипок итальянских мастеров прошлого и т.д.) рецептов, навыков, традиций культуры, сведений эмпирического характера. Как результат собирания такого рода сведений складывается конгломерат обширных, но логически неорганизованных обыденных знаний о действительности, практике, жизненном мире человека. Научное же познание системно, упорядочено, организуется собственным познавательным циклом, в своем развитии подчиняется общим для него закономерностям. Проблемы, поставленные однажды развитием науки, рано или поздно решаются совместными усилиями ученых; посредством чего расширяются и углубляются знания о действительности. В основе прогресса научного познания лежит преемственность его развития, совершенствование методов, сохранение традиций исследования, возможность использования уже добытого знания для получения новых результатов. Однако преемственность научного познания нельзя сводить к кумулятивным процессам накопления знаний. Развитие научного познания носит более сложный характер, предполагает единство экстенсивных и интенсивных процессов, т.е. не только собирание фактов, выдвижение все новых гипотез и теорий, но и постоянный критический пересмотр уже достигнутого, углубление знания действительности, дальнейшее совершенствование методологии, рационализацию всего процесса исследования. Научное познание, таким образом, есть единство экстенсивного, эволюционного и интенсивного, революционного; оно осуществляется и как кумуляция, накопление знание, и как революция, отказ от устаревшего и выдвижение радикально новых принципов и концепций.
Надо учитывать особый характер преемственности, который проявляется в научном познании на эмпирическом и теоретическом уровнях. Эмпирическое научное познание осуществляется как накопление фактов (хотя возможно и опровержение, казалось бы, давно установленных и проверенных фактов), установление их связей, открытие эмпирических закономерностей. Знание, полученное на эмпирическом уровне, образует в определенном смысле фундамент науки, основу ее развития. С другой стороны, эмпирическое знание содержит неполную информацию о действительности, отражая ее феноменологический слой. Постоянное расширение сферы фактуального знания и представляет собой важную закономерность развития науки на эмпирическом уровне.
Развитие теоретического знания обладает более сложным характером, его нельзя рассматривать как кумулятивный процесс. Если эмпирическое познание осуществляется как установление и накопление фактов, установление эмпирических закономерностей, т.е. в основном экстенсивно, то теоретическое познание есть процесс разработки, развития и смены теорий, пересмотра принципов, методов исследования, т.е. оно в основном интенсивно. Разумеется, отказ от устаревших теоретических положений не означает, что нарушается преемственность в развитии научного познания; нарушение такой преемственности означало бы, по сути, застой и распад науки. Преемственность обеспечивается на основных уровнях научного познания: на уровне философских оснований науки, в области научных теоретических идей и принципов, в сфере математического обеспечения научных исследований, а также на уровне научных методов и фактуального, эмпирического знания. По существу, развитие научного познания происходит как определенным образом координированное движение эмпирического и теоретического знания, когда динамическое взаимодействие эмпирии и теории, постоянное установление и нарушение соответствия между ними является движущим фактором развития науки.
Цель. В самом широком смысле общей целью обыденного и научного познания является отражение действительности. Однако эта общая цель конкретизируется по-разному в научном и обыденном познании. В отличие от обыденного познания, осуществляющегося в рамках практики и поэтому не имеющего собственных, специфических для него познавательных целей, наука в качестве непосредственных целей познавательной деятельности имеет целую иерархию фундаментальных, частных, прикладных целей, которые оформляются в качестве научных проблем. Подавляющее большинство целей научных исследований определяется системой науки, необходимостью решения тех или иных познавательных задач, хотя цель перед наукой может быть поставлена и извне, например, правительством, фирмой, армией и т.д. В отличие от обыденного научное познание всегда проблемно; формулировка и решение той или иной проблемы с необходимостью детерминирует постановку новых проблем, так что научное познание - это процесс движения от проблемы к проблеме.
Средства. В обыденном познании, как правило, не существует специальных средств познания, в качестве таковых используются орудия труда, инструменты. С их помощью человек вступает в непосредственный контакт с окружающей действительностью и открывает тем самым разнообразные свойства вещей. Напротив, в науке создаются самые разнообразные познавательные средства, в числе которых язык, научные приборы, методы и т.д. Важным средством обыденного познания является разговорный естественный язык. При помощи языка называются предметы, их свойства, хранятся и передаются знания от человека к человеку, от поколения к поколению. Ясно, что точность и строгость естественного языка невелика, он обладает полисемией, многозначностью, гибкостью в связях слов и предложений.
В научном познании естественный язык играет не основную, как в обыденном познании, а вспомогательную роль. В науке вырабатывается особый специализированный язык, где большое значение придается точности и строгости. Поэтому в научном познании важное место занимает деятельность по выработке новых и уточнению старых понятий, разработке строгих формализованных языков. Одно из важных направлений развития научного познания - математизация науки, которая не только увеличивает строгость и точность научного исследования, но и существенно повышает его эффективность, например, посредством метода математической гипотезы (описан С.И. Вавиловым). Методы, приемы обыденного познания являются мыслительными формами типа анализа, синтеза, индукции, сравнения, обобщения и т.д.; они имеют универсальное значение для любого познавательного и мыслительного акта. В научном познании эти методы входят в состав специализированных средств. К методам научного познания предъявляются требования точности, эффективности, удобства применения и др. Строгость, однозначность, высокая специализированность научных методов обеспечивают необходимый познавательный эффект, способствуют развитию науки. Что касается мотивов и интересов, то основные мотивы и интересы научного познания находятся внутри научной познавательной системы, хотя некоторые из них могут выходить за ее пределы; мотивы и интересы обыденного познания практически целиком выходят за его границы в сферу практики, характеризуются исключительно утилитарной направленностью.
Сравнение обыденного и научного познания свидетельствует об их включенности в деятельность и познавательный цикл. Обладая общей структурой деятельности, основные виды познания отличаются специфичной организацией познавательного цикла. Так, в обыденном познании отсутствует фаза построения теории, а философское познание ограничивается теоретическим исследованием. Только научное познание соединяет в своем познавательном цикле и теоретические, и эмпирические познавательные процедуры; еще одна особенность научного познания заключается в обязательном использовании математических средств, благодаря чему достигается необходимая строгость и точность как процедур исследования, так и получаемых в науке результатов, научных знаний. В познавательном цикле науки находит свое выражение общая качественная характеристика научного познания, т.е. в познавательном цикле фиксируется типичный для науки способ, метод получения нового знания; новое научное знание получается как результат прохождения основных этапов познавательного цикла. Очевидно, что путь к истине предполагает прохождение наукой этапов формирования проблем, выдвижения гипотез, теорий, эмпирических исследований с использованием наблюдений и экспериментов, процедур согласования эмпирии и теории и, наконец, формулировки новых проблем. При этом надо учитывать, что в индивидуальном научном исследовании или отдельной науке указанная организация познавательного цикла, как правило, не выдерживается. Например, в индивидуальном научном исследовании кроме всех прочих важную роль играют процессы коммуникации, общения, без которых оно вообще не может осуществляться. Общий познавательный цикл науки по-разному выполняется в различных отдельных научных дисциплинах в силу разных причин, например, из-за особенностей предмета исследования, истории формирования, степени развитости, традиций и т.д.
Иными словами, отдельные науки могут представлять собой определенные отклонения от общего, типического в научном познании, однако эти отклонения преодолеваются общим ходом развития познания. Скажем, одна наука постепенно укрепляет пока еще не развитый математический аппарат, повышая точность и строгость исследования, другая развивает теоретическую компоненту, третья совершенствует эмпирический экспериментальный уровень своего познавательного цикла. В конечном итоге, с развитием научного познания отдельные науки в большей или меньшей степени приближаются к типическому в науке, к свойственной развитым наукам организации познавательного цикла, поскольку именно в развитых науках-лидерах он воплощен наиболее полно, в единстве всех необходимых процедур: теоретических, эмпирических, математических. Например, гуманитарные науки испытывают определенные сложности в деле повышения точности и строгости исследования, в совершенствовании теоретического и эмпирического уровней познания. Известно, что естественные науки, и прежде всего физика как наука-лидер, в этом отношении их опережают. Однако и гуманитарные науки во все большей степени приближаются к типической, эталонной для научного иознания в целом организации познавательного цикла. Так, например, современная археология характеризуется стремлением наряду с совершенствованием эмпирических процедур сбора и изучения археологического материала развивать его теоретические объяснения, применяя статистические средства, повышать точность и строгость археологического исследования; более того, в археологии стал применяться эксперимент, т.е. так называемое экспериментальное моделирование первобытных технологий, или трасология, предложенная С.А. Семеновым. Археологическое экспериментирование предполагает практическое создание орудий первобытного человека с использованием первобытных технологий, например, ударной или отжимной ретуши и т.п. и последующее применение сделанных каменных и других орудий труда в трудовых операциях резки, рубки, оттески, шлифовки, пиления и т.д. Иными словами, в итоге получается экспериментальная модель первобытной трудовой деятельности, изучая которую археология получает объективные данные о прошлом, о возможностях древней техники; на основании этих данных может осуществляться проверка тех или иных гипотез, теоретических предположений. Наконец, в гуманитарных науках все более широкое применение получает компьютер, компьютерное моделирование, позволяющее успешно решать самые разнообразные научные задачи, связанные, например, с обработкой большого массива эмпирического фактического материала, проведением компьютерных экспериментов с прошлым и т.д. Таким образом, научное познание организуется на основе специфичного для него и весьма развитого познавательного цикла. Благодаря этому научное познание становится высокоспециализированным процессом, системой познавательной деятельности, которая требует для своего осуществления специальных форм и средств. Как следствие этого научное познание располагает возможностью получать всеобщее, необходимое, объективное знание, отражающее действительность во всей ее полноте, включая знание явления и знание сущности.
2. НАУЧНАЯ РАЦИОНАЛЬНОСТЬ
Человеческая деятельность в отличие от поведенческой активности животных озарена светом разума, носит упорядоченный, целесообразный характер, т.е. обладает рациональностью. Рациональность получает ту или иную интерпретацию соответственно исходным философским установкам и принципам. Например, идеализм обосновывает, что рациональность коренится либо в активности действующего субъекта, который упорядочивает, вносит разум в иррациональный хаос действительности, либо в активности надмировой идеальной сущности, создающей как рациональность действительности, природы, так и рациональность субъекта деятельности, которая в этом случае носит вторичный характер. Материализм выводит трактовку рациональности из свойств действительности, из определенной ее упорядоченности, структурированности. Эта упорядоченность проявляется, прежде всего, в различных законах и закономерностях, на которых основывается бытие мира и которые познаются человеком посредством своего разума, интеллекта. Противоположная названным философская позиция иррационализма состоит в отрицании рациональности и как свойства действительности, и как характеристики человеческой деятельности, в том числе характеристики человеческого познания. На первый план в иррационализме выходит концепция изначального хаоса, принципиально исключающего какую бы то ни было упорядоченность, закономерность бытия. Аналогичным образом в гносеологии обосновывается первичность бессознательного, алогичного, противоположного разуму. принципиальная несостоятельность разума в его попытках с помощью своих интеллектуальных средств охватить, объяснить иррациональное и в связи с этим выдвижение на первый план таких, с этой точки зрения, противоположных разуму и более высоких средств, как интуиция, инстинкт (Ф. Ницше, А. Бергсон и др.).
Рационалистическая философская установка обосновывает не только упорядоченность, структурированность действительности, т.е. ее подчиненность объективным законам и закономерностям, но и ее познаваемость, посредством рациональных интеллектуальных форм, утверждая, что в ходе познания в принципе не может оставаться никакого иррационального «остатка», который был бы недоступен человеческому разуму. Представления о рациональном устройстве действительности, которое может быть познано рациональным образом, т.е. обоснование приоритета разума в его познании характерны и для современного естествознания. Так, крупнейший физик XX столетия Луи де Бройль провозглашает постулат, который сводится «к допущению рациональности физического мира, к признанию, что существует нечто общее между структурой материальной Вселенной и законами функционирования нашего разума».
Все это говорит о том, что рациональное имеет и онтологические основания. Кроме этого, рациональное начало есть в практике и познании, практическая и познавательная деятельность наряду с самой действительностью являются другой сферой существования рационального. Именно в практике образуются первые формы упорядоченности, т.е. рациональности человеческой деятельности. В качестве такой формы, например, можно назвать логику, формирующуюся именно в ходе практической деятельности. Приемы, схемы практической деятельности, многократно повторяясь, интериоризуются, т.е. переносятся внутрь, в сознание человека, закрепляются в нем, становятся в силу этого нормами, правилами логики, которым человек начинает подчинять как свою практическую, так и умственную, познавательную деятельность.
Логика как проявление рациональности является результатом постоянно воспроизводящегося повторения и закрепления на протяжении тысяч лет человеческой истории практических и умственных действий человека. При этом рациональность того или иного вида деятельности должна рассматриваться в связи с социокультурным контекстом, который так или иначе обосновывает, оправдывает их существование. Так, один тип общества, одна культурная традиция оправдывает, считает рациональной и целесообразной магию и колдовство, другая отрицает колдовство, но утверждает научный подход к действительности. Иными словами, исторический факт обоснования в разных социальных и культурных традициях различных видов деятельности (колдовство, наука) как рациональных для своих конкретных исторических условий подтверждает социокультурную относительность рациональности, доказывает невозможность абсолютных, неизменных для всех времен логических и философских критериев рациональности. Это означает, что рациональность человеческой деятельности не сводится только к формально-логической ее упорядоченности. Очень важной для понимания рациональности деятельности человека является ее содержательная сторона. Это предполагает учет не только собственно упорядоченности, но и соответствия деятельности реальному миру, действительности (природной и социальной), т.е. сумме объективных условий, в контексте которых она осуществляется. В этом смысле содержательная сторона рациональности превалирует над ее формальной стороной, поскольку организованность, структурированность любого вида деятельности предполагает в качестве своей основы содержательное определение целей, выбор необходимых средств, методов осуществления самоконтроля и т.д. Любая деятельность, чтобы быть действительно рациональной, не только упорядочивается, структурируется в соответствии с логическими критериями, но и, будучи структурированной, должна иметь определенные цели, средства, методы; целесообразность деятельности как проявление ее рациональности не может быть определена чисто формально-логически, она требует онтологических, гносеологических, методологических, социокультурных, практических оснований. Только соблюдение всего комплекса выделенных условий делает деятельность действительно разумной, рациональной, т.е. адекватной действительности, ее объективным свойствам и закономерностям.
В этой связи заметим, что о рациональности религиозной деятельности, например, можно говорить только в достаточно узком смысле, только в значении ее определенной организованности, упорядоченности, поскольку она подчиняется известным организационным принципам, догматам. Но по целям, по ее собственным философским оценкам своей роли и места в культурной и общественной жизни религия расходится с разумом, обосновывает его ограниченность, необходимость подчинения вере как особому сверхразумному началу. Человеческая рациональность, ее самодостаточность в организации жизни людей - вот что отрицается религией.
Если сравнивать между собой различные виды деятельности человека, то очевидно, что разумность, рациональность человека, рациональность его поведения в наибольшей степени выражается в науке, научной деятельности.
По-видимому, обыденное познание и его, так сказать, квинтэссенция - здравый смысл - при всех их достоинствах, при всем их значении для существования и развития науки, философии и вообще культуры представляют собой в сравнении с наукой низший уровень рациональности человеческой жизнедеятельности. Представления здравого смысла недостаточно систематизированы, вытекают из самых разных, зачастую противоречивых источников. Здравый смысл, опираясь на обыденное мировоззрение, обыденное неспециализированное знание, на явления общественной психологии и ценностные установки, выражает исторически сформировавшиеся противопоставления разумного и неразумного, осмысленного и бессмысленного. Отсюда представления здравого смысла нередко противоречивы, несопоставимы друг с другом, а также с реальной жизнедеятельностью человека. Более того, представления здравого смысла зачастую противоречат научным взглядам, научному познанию, которое вопреки наглядной самоочевидности здравого смысла разрабатывает понятия, лишенные наглядности, противоположные привычным житейским стереотипам, понятия парадоксальные, «сумасшедшие» с точки зрения обычного понимания и рассуждения.
Научная деятельность рациональна прежде всего по цели, т.к. наука имеет своей целью открытие объективных свойств, закономерностей действительности. Достижение данной цели свидетельствует о рациональности научного познания, его разумности, поскольку, достигая своей цели) оно воплощает в своем знании истину. Разумеется, эта общая для всей науки цель приобретала различные исторические образы в ходе развития научного познания. Так, согласно представлениям классической мауки мир, познаваемый учеными, представлял собой рационально устроенную объективную реальность. Рациональность мира выражалась в причинных связях, простых, строгих и однозначных.
Существование мира описывалось действием строго детерминированных, однозначных динамических законов. «Природа проста и не роскошествует излишними причинами вещей», - утверждал Ньютон. В этой картине рационально устроенной, гармоничной вселенной, в сущности, не находилось места для вероятностных процессов, случайных событий, т.е. для неопределенности. «Ум, - писал П. Лаплас, — которому были бы известны для какого-либо момента все силы, одушевляющие природу, и относительное положение всех ее составных частей, если бы вдобавок он оказался достаточно обширным, чтобы подчинить эти данные анализу, обнял бы в одной формуле движение величайших тел Вселенной наравне с движением легчайших атомов: не нашлось бы ничего, что было бы для него недостоверно, и будущее, так же как и прошедшее, предстало бы перед его взором».
В современной науке убеждение в рациональности мира сохраняется; однако с новой точки зрения рациональное устройство мира приобретает более сложный и глубокий характер. В частности, в полемике со сторонниками лапласовского детерминизма в науке утвердилось понимание того, что рациональность мира не сводится только к динамическим законам, однозначным каузальным связям, что гармония действительности выражается не только в ее жесткой однозначной детерминированности, но и в неопределенности, случайных, вероятностных событиях и связях, которые, безусловно, также имеют фундаментальный характер. В этой связи, например, известный физик М. Борн подчеркивает, что «современная физика полностью опирается на статистическую основу».
Таким образом, убеждение ученых в рациональном устройстве мира хорошо сочетается с целесообразным, разумным характером научного познания как эффективной деятельности по производству истинного знания. Это гарантирует науке высокий социальный престиж; общество видит в науке социальный институт, обеспечивающий достижение объективной истины, истинного знания о природном и социальном мире, и в силу этого способствующий развитию человечества, стремлению устроить жизн людей на разумных началах. В этом случае наука утверждает возможность не только рационального постижения объективной реальности, но и рационального переустройства социальной действительности. При этом высокие познавательные возможности науки зачастую порождают в обществе неумеренные ожидания и повышенные требования к научной деятельности, к ученым и получаемым ими результатам. Это питает антисциентизм, формирует в обществе необоснованную склонность обвинять во всех грехах ученых и науку. Содержательная сторона рациональности научного познания, связанная с его целесообразностью, производством истинного знания о реальности требует для своего адекватного выражения организованности, т.е. упорядочения внутренних связей самой системы научной познавательной деятельности, рациональной организации процесса исследования, рациональных средств, методов его осуществления, а также определенных критериев, использование которых обеспечивает сохранение и поддержание этой рациональности. Критерии научной рациональности применяются в определенной совокупности, системе, которая представляет собой не что иное, как некоторый образец, идеал, стандарт правильного научного познания, ведущего к истине. Эти критерии, или гносеологический идеал науки, вырабатываются на основе практики исследования и, несомненно, нуждаются в философском анализе и обосновании. Так, практика и история научного познания показала ограниченность неопозитивистской программы создания рафинированной науки, удовлетворяющей, по их мнению, абсолютным, выраженным языком математической логики и годным для всех времен и всех наук критериям, которые фиксировали на самом деле один из возможных, а именно эмпирицистский идеал научности. Иными словами, практика и история научного познания показывают, что в принципе невозможно сформулировать один универсальный идеал, критерий научности, что эти критерии, идеалы научности многообразны, развиваются вместе с развитием науки.
Относительность, изменчивость идеалов научности не должна приводить к релятивизму в их трактовке. В частности, сомнителен так называемый методологический анархизм Фейерабенда, уравнивающий в правах науку и другие виды деятельности, в том числе такие, например, как паранаука или мифология. Отрицая догматические, как он считает, представления о научном методе, якобы принуждающем ученых к единообразию поведения и мысли, Фейерабенд стирает всякие грани между наукой и другими формами социальной жизни. По его мнению, научное познание должно быть демократическим процессом, допускающим неограниченную пролиферацию, т.е. размножение конкурирующих идей и гипотез. В науке допустимо все; для ее успешного развития необходимо упорство в применении любых, даже заведомо несовместимых с научной традицией, с традиционной научной рациональностью средств, концепций, поскольку не было в истории научной мысли методологических требований, которые не были бы нарушены. Более того, контекст открытия требует использования иррациональных (предрассудков, страстей, самонадеянности, тупого упрямства), противостоящих диктату разума элементов. Тем самым обеспечивается гибкость науки, которая «заключается только в отсутствии какого-либо «научного метода» и, следовательно, в невозможности отграничить науку от других форм жизни», - утверждает Фейерабенд. Однако требование гибкости научных средств не может устранить качественную определенность науки, научную рациональность. Вопреки Фейерабенду ученые достаточно легко различают научный подход, науку и псевдонауку, паранауку и т.д. При всей гибкости методологических нормативов остается в целом незыблемым их сущностное ядро, стержень, определяющий именно специфику научного подхода к действительности. Методы, стили, теории, парадигмы меняются, но наука остается наукой. Научная рациональность есть категория, которая устанавливает границы науки и ее соотношение и возможность взаимодействия с вненаучными видами деятельности.
Идеалы научности относительны, варьируют от науки к науке, исторически развиваются вместе с развитием познавательной деятельности. Гак, классический тип рациональности науки нового времени сложился на основе убеждения в строгой однозначности рационального устройства мира. В отличие от этого современная наука исходит из представлений о фундаментальности вероятностных, случайных характеристик действительности, обосновывая, что наряду с динамическим, однозначным в науке должен фигурировать и вероятностный подход как необходимый инструмент познания этой неопределенности. На изменение классического идеала рациональности повлияло также появление релятивистской н квантовой физики, теории которых как раз учитывают фактор неопределенности. А формирование кибернетики, общей теории систем обусловило системную ориентацию современного научного познания, которая требует исходить из представлений об исследуемом объекте как о сложной системе, из необходимости рассматривать отдельные стороны исследуемого явления в соотнесенности с целым, а саму систему - в оппозиции со средой. Это предполагает опять-таки учет неопределенности, присущей знаниям о сложных системах, широкое использование компьютеров при анализе функционирования и развития таких систем, применения аппроксимирующих методов, пересмотра идеалов точности и строгости научного исследования.
Критерии научности, научной рациональности, составляющие исторически обусловленный познавательный идеал в науке, не есть совокупность чисто формально-логических норм и требований; они вырабатываются в практике научного познания, тесно связаны со смыслом научных принципов, идей и теорий, необходимо обосновываются философией и методологией, обеспечивают производство истинного знания о действительности. Другими словами, существует тесная взаимообусловленность понятий научности, научной рациональности и истинности. Такие обычно фиксируемые критерии научности, как эмпирическая подтверждаемость, доказательность, критицизм, непротиворечивость, строгость, системность, интерсубъективность и др. не только с внешней, формально-логической стороны формируют научное познание - упорядочивают, систематизируют, элиминируют противоречащее науке и т.д., но и гарантируют (разумеется, не абсолютно) достижение истинного знания.
Важнейшей характеристикой научной рациональности является способность науки к рефлексии. Под рефлексией понимается осмысление человеком своих собственных действий, т.е. деятельность самопознания. Рефлексия предполагает исследование не внешнего мира, а самой деятельности с тем, чтобы осознать, понять ее особенности, закономерности и тем самым сделать более эффективной и осуществить ее обоснование. Хотя рефлексия осуществляется в многообразных формах, соответствующих многообразию форм человеческой деятельности (индивидуальной, теоретической, художественной и т.д.), общей для всех них является направленность на осознание, понимание. Именно благодаря рефлексии достигается понимание особенностей самой познавательной деятельности, превращение неявных, неосознаваемых компонентов научного познания в явные осознаваемые, контролируемые.
Если в этой связи вспомнить об обыденном познании, то существенной ограниченностью последнего как раз и является отсутствие в его рамках рефлексивной деятельности в точном методологическом смысле этого слова. Для него характерно некритическое, нерефлексивное отношение к самому себе, к собственным основаниям. И если под рациональным понимать возможно более полную ясность, исчерпывающее понимание, то именно в превращении неявного, неосознаваемого в явное, осознаваемое в процессе научного познания, в достижении максимально возможной осознанности самой познавательной деятельности в науке и заключается весьма важный смысл научной рациональности.
Однако рациональность научного познания - это не только понимание природы научной деятельности, ее особенностей (в достижении этого понимания основная роль принадлежит философии), но и регуляция этой деятельности. Иными словами, рациональность научного познания проявляется в широкой возможности как создавать различные формы и методы исследования, так и контролировать их применение, в том числе и подвергать критике неадекватные, неэффективные. Таким образом, рефлексивность представляет собой неотъемлемую сторону научного познания, важнейшую характеристику его рациональности. Процесс рефлексии происходит непрерывно, непосредственно включен в сам ход познания, представляет собой его необходимую предпосылку и обоснование. Рефлексивность научной познавательной деятельности выражается как в философско-гносеологическом, методологическом анализе науки, закономерностей ее функционирования, развития, в обосновании научной методологии, так и в разработке, построении и применении методов исследования. Это означает, что рефлексивная составляющая научного познания обладает сложной структурой, в которой выделяются в зависимости от степени обобщения различные формы и уровни научной рефлексии, в числе которых важное место занимает научный метод.
3. КОГНИТИВНАЯ СТРУКТУРА НАУКИ
Наука представляет собой сложное образование, соединяющее в себе, по крайней мере, два пласта явлений - социальный и познавательный, которые с разных сторон- и вместе с тем во взаимной связи характеризуют единую по своей природе систему познавательной деятельности в науке. Соответственно для описаний своей структуры она требует социологического и гносеологического подходов, которые должны взаимно дополнять друг друга и в то же время различаться средствами и углом видения проблем.
Социология науки занимается кругом проблем, относящихся к социальной природе науки, изучает особенности социальных свойств научного знания и научной деятельности. Более подробно этот аспект структуры науки будет рассмотрен в следующем параграфе. Сейчас же сосредоточим внимание на когнитивной структуре науки.
Отметим, что познавательная сторона научной деятельности, изучается гносеологией на основе определенных методологических принципов, требующих различения внутреннего и внешнего, сущностного и феноменологического, общего и единичного. Так, анализ сущностной, внутренней стороны когнитивной структуры предполагает, прежде всего, выделение основных элементов научного познания - таких, например, как теория, метод, научное знание в различных формах, установление связей, отношений этих элементов, определение их функций в процессе познания. В этом случае изучаются внутренние элементы, отношения и механизмы функционирования системы познания, т.е. именно то, что является общим необходимым для научного исследования в любой научной дисциплине, то, без чего было бы невозможным сохранение качественной определенности науки как особой системы познания.
Изучение внутреннего предполагает известное отвлечение от специфики тех или иных наук, в которых это внутреннее, сущностное проявляется. Это отвлечение и дает возможность философскому анализу выявить такие необходимые свойства, компоненты системы научного познания, которые обязательны для любой науки. В ряду вопросов, раскрывающих сущностную сторону когнитивной структуры науки, важнейшее место ' принадлежит проблеме эмпирического и теоретического. Взаимодействие эмпирического и теоретического обеспечивает правильное и эффективное развитие научного познания. «Сбалансированное» движение познания на этих уровнях отличает познавательную систему науки от других видов познания, например, философского, обыденного. Иными словами, научное познание характеризуется специфическим познавательным циклом, включающим основные относительно самостоятельные и вместе с тем взаимосвязанные, взаимно обусловливающие друг друга ступени исследования – эмпирическую и теоретическую. Это утверждение, разумеется, справедливо по отношению к научному познанию как таковому, к науке в ее «усредненном», идеализированном виде, поскольку единичные, индивидуальные исследования в науке могут существенно отличаться от данной схемы.
Однако очевидно, что именно таким образом организованный познавательный цикл, т.е. определенное взаимодействие эмпирического и теоретического, выражает сущностную природу системы научного познания, ее качественную определенность. Установление в XVII столетии специфического познавательного цикла (об этом уже шла речь в соответствующем разделе) с характерным единством эмпирического и теоретического знаменует собой историческое формирование науки в полном смысле этого слова, или так называемой зрелой, классической науки.
Этому не противоречит существование так называемых эмпирических, описательных наук, или так" называемой эмпирической описательной стадии в развитии той или иной науки. Дело в том, что не существует абсолютно чистого, свободного от теоретических предпосылок эксперимента или наблюдения в современной науке, аналогично исторически не было абсолютно чистой по отношению к теории науки или чисто эмпирической, описательной стадии в развитии тех или иных наук. Поскольку любая даже сугубо эмпирическая стадия в науке или исследовательская программа нуждается в своем теоретическом обосновании (любая эмпирия «нагружена» явно или неявно теоретическими положениями), постольку в отсутствие собственных теорий эмпирические описательные науки в качестве теоретического базиса используют философское знание. Именно философия выступает в истории познания «заместителем» специально-научных теорий, обеспечивая «сохранность», целостность специфического для науки познавательного цикла, соединение в этом цикле теоретических и эмпирических познавательных процедур.
Сущностная сторона когнитивной структуры науки раскрывается также в соотношении предметного и рефлексивного уровней научного познания. Предметный уровень направлен на изучение объективной реальности, раскрытие ее законов, свойств и отношений. В нем находит свое выражение специфическая в сравнении с другими видами познавательной деятельности реализация субъект-объектного отношения. В то же время познание объектов реальности в научной, как и в любой другой деятельности, предполагает не только взаимодействие субъекта с объектом, но и постановку целей, выработку соответствующих средств и форм исследования, установление определенной корреляции между поставленными целями и необходимыми для их реализации средствами, и соответственно корректировки, управления самим процессом познания. Иными словами, научная деятельность осуществляется как осознанный целенаправленный процесс, требующий совершенствования и оптимизации, повышения уровня своей эффективности, а значит, своего собственного осмысления.
Научная деятельность без тех или иных форм самосознания попросту невозможна. Причем в рамках самосознания науки (в этом наука похожа на любую социокультурную систему) складывается научная рефлексия как критика науки, совершенствующая научное исследование, и одновременно рефлексия в форме консерватизма научного сознания, его парадигмальности, и даже как совокупность научных мифов. Однако научная рефлексия в узком методологическом смысле слова представляет собой в отличие от научных мифов и научного консерватизма высокоспециализированную форму научной деятельности, научного самосознания, которая образует необходимое условие развития науки. Именно в научной рефлексии достигается осмысление предпосылок исследования, выявление неявного знания и превращения его в явное. Это предполагает анализ знания и деятельности, его уточнение, отказ от ошибочных предпосылок, положений, так что рефлексивные акты осуществляются в единстве явного и неявного, рефлектируемого и нерефлектируемого, что приводит к порождению нового знания, к выходу за пределы наличной системы научного познания.
Рефлексия связана с пониманием, которое трактуется как особая форма, специфическая познавательная процедура в науке, наряду с описанием, объяснением и пр. Хотя рефлексия предполагает в качестве своего итога понимание, осмысление объекта рефлексивного отношения, в нашем случае - научного познания, рефлексия не тождественна пониманию. И в то же время рефлексия невозможна без понимания. Рефлексия, как самосознание, самопознание позволяет сохранить целостность научной деятельности, предохраняет ее от распада на отдельные изолированные системы, особенно в переломные эпохи, связанные с революциями в мышлении, переходами от парадигмы к парадигме, от одной картины мира, концептуальной системы к другой.
Связь рефлексии и понимания видится в том, что сама рефлексия в историческом плане, в историческом развитии проходит ряд стадий, например, описательный этап, объяснительный, классификационный и этап понимания. Да и само возникновение науки как особого вида познания становится возможным на той стадии, когда сформировалась специализированная деятельность по критическому осмыслению результатов, процесса, средств исследования и управления, т.е. когда сложилась достаточно развитая рефлексивная система. Поскольку понимание, в свою очередь, предполагает диалог субъектов научной деятельности, постольку рефлексия включает также понимание, осмысление процессов коммуникации как внутринаучной, так и коммуникации между наукой и культурой.
Среди необходимых структурных элементов, условий эффективного осуществления процессов коммуникативного взаимодействия субъектов деятельности выделяются знаковый контекст, ценностные структуры социокультурного бытия, психологические характеристики процесса общения и, разумеется, состояние понимания, которое возникает или не возникает в ходе коммуникации. Но такое понимание и соответственно коммуникация невозможны без рефлексии, осмысления как своей собственной научной деятельности, так и сущностных черт научного познания вообще, а также конкретной ситуации общения. Тем самым рефлексия осуществляется в контексте взаимодействия личностных, индивидуальных смыслов и социальных значений, в ситуации «погруженности» в культуру, происходит как взаимодействие форм индивидуальной и надындивидуальной рефлексии.
Кроме рассмотрения общих характеристик рефлексии в их соотношении с широким социокультурным фоном научной деятельности, совокупностью разного рода условий и предпосылок научного познания необходим анализ конкретных форм рефлексии, непосредственно участвующих в процессе функционирования и развития научного исследования, науки. Так, выделение внешних и внутренних форм рефлексии позволяет, с одной стороны, детально исследовать предметный уровень познания, непосредственно связанный с исследованием объекта, решением познавательных задач, с другой стороны, на основе анализа метапредметных форм рефлексии (метатеоретической, метаэмпирической, метанаучной) понять общие закономерности функционирования и развития научного познания, а также возможности соотнесения, связи познавательного процесса в науке с широкими мировоззренческими, философскими и социокультурными условиями научной деятельности.
Наконец, большое значение для понимания природы и функций рефлексии имеет идея о том, что рефлексия в науке кроме осмысления, самопознания науки выполняет, по В.Н. Борисову, функции планирования, контроля познавательного процесса и управления им. Причем между разными формами рефлексии существует определенное разделение функций. Если метапредметная рефлексия, внешние формы рефлексии представляют собой осознание научного познания и его результатов как бы со стороны, т.е. здесь главная функция - функция понимания, анализа, выявления предпосылок, неявных компонентов и т.д., то формы внутринаучной рефлексии используются для управления познавательным процессом и его регулирования на предметном уровне. Эти функции осуществляются через выработку программы исследования, контроль познавательных действий, сопоставление получаемых результатов с программой, корректировку процесса исследования и самой программы.
Анализ участия различных форм рефлексии имеет большое значение п для успешного планирования и управления коллективной научной деятельностью. Когнитивная структура науки имеет также и внешнюю, феноменологическую сторону, представляющую познавательную систему науки как совокупность многочисленных, относительно самостоятельно функционирующих в общем ходе научного познания дисциплин (физики, биологии, социологии, технических наук и т.д.), которые обладают своим предметом, собственной спецификой и между которыми устанавливаются определенные отношения. Здесь основное внимание философского анализа сосредоточивается на специфике тех или иных наук, на особенностях проявления общих закономерностей познания в соответствующих науках.
Ясно, что некоторые общие представления о научной теории должны в этом случае определенным образом видоизменяться при переходе, скажем, от физики к математике и от естествознания к общественным наукам, т.е. от одной научной дисциплины к другой. В то же время научная дисциплина трактуется не только с точки зрения ее когнитивных характеристик - методов исследования, научных теорий, единого концептуального аппарата и исследовательской программы, но с учетом ее социального статуса, социальных связей. Научная дисциплина характеризуется не только познавательной стороной, но и социальными аспектами ее функционирования - наличием кафедр, научных институтов, лабораторий, системой подготовки кадров и т.д. Важная функция дисциплинарной организации науки состоит в том, что она является формой связи науки и культуры, каналом, который обеспечивает социализацию достигнутых научных результатов, делает их достоянием общества. Наличие же противоречий между дисциплинарной организацией и передним краем науки, научного познания, который организован не институционально, а проблемно, приводит к интеграции науки, к возникновению междисциплинарных связей, междисциплинарных исследований.
Внешняя сторона когнитивной структуры науки находит свое выражение в проблеме классификации наук. Разумеется, полностью структуру науки нельзя свести к классификации, но не учитывая классификации наук, не беря в расчет соотношение различных наук, составляющих единую систему научного познания, невозможно правильно понять исходную проблему. Единый поток научного познания, осуществляющийся через отдельные науки, не представляет собой механической суммы чисто внешних по отношению друг к другу научных дисциплин. Между отдельными науками существуют различные социально-когнитивные связи и отношения, которые необходимо учитывать в классификациях. Иными словами, в классификациях отражается не только специфичность, рядоположенность наук, вытекающая из особенностей их объектов и методов исследования, но и их координация, субординация и взаимодействие.
Взаимодействие наук раскрывается через общий механизм их дифференциации и интеграции. Дифференциация есть процесс разделения единого потока познания на отдельные науки, превращение первых ростков научного знания в самостоятельные, оформившиеся научные дисциплины; в дифференциации находит свое проявление усиливающаяся специализация научной деятельности, дробление исследования на все более узкие области, темы, проблемы, что создает препятствия нормальному развитию научного познания, приводит к затруднениям в сфере научной коммуникации, когда специалисты даже одной и той же науки не понимают друг друга и т.д. Интеграция - процесс объединения разных, зачастую далеко отстоящих друг от друга наук и превращения их в особые синтетические науки, такие, например, как социальная психология, биохимия, астрофизика и т.д.; интеграция в какой-то мере преодолевает негативные последствия дифференциации, выражает потребность науки в единой научной картине мира. Дифференциация и интеграция являются существенными характеристиками научного познания, необходимым образом взаимосвязаны, взаимообусловливают друг друга: дифференциация создает предпосылки для интеграции, а интеграция всегда сопровождается дифференциацией.
Интеграция науки осуществляется по многим каналам. Можно отметить в этом процессе существенную функцию философии, которая, выступая всеобщей методологией, создает необходимое поле теоретических концепций, идей, используемых специальными науками. Важная роль выполняется математикой, которая не только сообщает точность, строгость исследованию, служит языком, а также эффективным эвристическим средством для остальных наук, но и позволяет применять в разных науках измерение, количественный подход, укрепляя тем самым межнаучные связи. Содержательной характеристикой процесса интеграции является образование так называемых общенаучных понятий и интегративных наук, например, система, функция, вероятность, кибернетика, теория систем и т.д. Принципиальным для понимания процесса интеграции является вопрос о взаимодействии социогуманитарных и естественных наук, поскольку качественное своеобразие естественнонаучного и социогуманитарного знания рельефно проявляется во всех компонентах такого отношения. Так, различия естественнонаучного и социогуманитарного знания обнаруживаются в специфике теорий, методов, языка, объектов, эмпирического и теоретического исследования и пр.
Как известно, это дало повод неокантианцам поставить проблему специфики номотетических (естественных) и идиографических (социогуманитарных) наук. Интеграция естественнонаучного и социогуманитарного знания использует принципиально те «механизмы» и «каналы» взаимопроникновения, которые характерны и для любых других наук. Здесь и перенос теорий и методов, и образование интегративных наук и совокупности общенаучных понятий, и использование языка математики. Особая роль в этом процессе отводится техническим наукам. Именно в технических науках осуществляется синтез знания естественных, природных закономерностей и знания социальных целей, потребностей человека. Теоретический фундамент этого процесса образует философское знание. Разумеется, необходимо учитывать своеобразие процесса интеграции социогуманитарного и естественнонаучного знания, Невозможен, например, механический перенос аппарата классической математики, который успешно используется естествознанием начиная с XVII века, в область обществознания. Специфика объектов социогуманитарных наук потребовала создания нового математического аппарата, приспособленного к задачам социального познания. Скажем, специфика социальной статистики обусловлена особой природой массовых явлений в обществе, которые не подчиняются закону нормального распределения случайных величин, поскольку величины, входящие в социальную совокупность, имеют не только случайный, но и систематический характер.
Особенности внешней феноменологической стороны когнитивной структуры науки выражаются также в определенных отношениях между науками, в определенной их координации и субординации. В частности, большое значение имеют занимаемое ими место, степень фундаментальности и соответственно методологическая роль той или иной дисциплины в общей системе научного познания. В этом плане методологическая роль философии или математики в общей системе науки, безусловно, выше, нежели аналогичные возможности, скажем, химии или технических дисциплин. При этом надо различать понятия «фундаментальные и прикладные исследования» и «фундаментальные и прикладные науки». Такие признаки фундаментальности, как обнаружение новых явлений действительности и формулировка соответствующих законов (причем закон или какое-либо теоретическое положение более фундаментальны, если не выводимы из других законов или положений), отсутствие прямой связи с практикой - все эти признаки распространяются как на определенные науки, так и на отдельные направления в научных исследованиях и даже на индивидуальные исследования тех или иных ученых. Существуют разные степени, своего рода градация фундаментальности для различных наук и исследований, так что в рамках любого даже сравнительно узкого направления в науке или индивидуального исследования есть своя фундаментальная составляющая.
В этой связи большое значение имеет фундаментальность той или иной науки, которая проявляется в степени ее методологического влияния на другие дисциплины и на развитие системы научного познания в целом. Фундаментальную методологическую роль, определяющую развитие и функционирование всей науки, выполняют философия, математика, а также науки, играющие роль лидера на определенном этапе эволюции научного познания. Значение философии и математики для становления науки как таковой, т.е. по всем основным параметрам вполне сложившейся зрелой специализированной системы познания, для формирования специфически научного познавательного цикла рельефно обнаруживается в истории науки. Действительно, как показывает история познания, без использования опыта философского теоретического исследования и математического способа ведения строгого доказательства и точного измерения, накопленного за многие века развития философией и математикой, историческое становление системы научного познания в полном и определенном смысле этого слова было бы невозможно.
Кроме философии и математики, которые всегда выступали и продолжают выступать постоянно действующим фундаментальным фактором развития и функционирования всей науки, всей системы научной познавательной деятельности, в качестве фундаментальной выступает наука, выполняющая роль лидера научного познания. Наука-лидер самым непосредственным образом на основе принципов, вырабатываемых философией, формирует картину мира, парадигму, стиль научного мышления, вырабатывает наиболее действенные в данных исторических условиях способы решения проблем; ее методы, язык, принципы применяются в других науках, надолго задавая направление движения научного исследования.
В современном научном познании роль лидера выполняет физика. Вместе с тем вполне возможна смена лидера, когда фундаментальное значение приобретают и другие науки, например, биология, экология рядом с физикой, или когда старый лидер может вообще уступить место новому.
Познавательная деятельность в науке представляет собой познание, которое осуществляется, по крайней мере, на двух взаимосвязанных уровнях. Очевидно, что научная деятельность - это, прежде всего, индивидуальный труд отдельно взятых ученых. Каждый ученый в силу различных обстоятельств выбирает круг определенных проблем, решением которых он занимается. Это могут быть проблемы чисто теоретического свойства, например, работа над созданием единой теории поля в физике или, наоборот, проблемы экспериментального исследования, например, постановка серии экспериментов по уточнению постоянной тяготения Ньютона. Иными словами, индивидуальная работа ученого весьма сильно варьирует в зависимости от общего состояния той или иной науки, от социальных условий, от желаний и интересов самого ученого. Ученый может заниматься наблюдением и систематизацией фактов, построением глобальных теорий, экспериментированием, объяснением фактов, выдвижением гипотез, доказательством теорем и т.д. При этом он, возможно, будет переходить от решения одного вида проблем к формулировке и обоснованию новых. Эта индивидуальная достаточно подвижная, вариабельная деятельность в науке называется индивидуальным уровнем научного познания.
Индивидуальная научная деятельность опирается на надындивидуальный уровень познания, третий мир, по К. Попперу, т.е. на общее состояние науки, достигнутое к тому времени, на то состояние научного знания, которое «застал» к моменту начала своей научной карьеры тот или иной ученый. Этот уровень научного познания представляет собой безличностный процесс движения научного знания, научных проблем и методов, который в известном смысле самостоятелен по отношению к каждой отдельно взятой индивидуальной деятельности, который определяет, детерминирует эту деятельность, а с другой стороны, сам «питается» ею, включает в себя ее результаты.
Выделенные уровни соответствуют уровням организации субъекта научного познания; субъектом надындивидуального уровня познания не может выступать отдельный ученый, поскольку это сфера движения знания, проблем, методов, образующая в своей совокупности целостный, системно организованный процесс. Историческое движение науки как целостного, преемственного процесса, безусловно, определяет деятельность отдельных ученых, создавая для нее предпосылки, необходимые условия в виде выработанных ранее методов, сформулированных фундаментальных идей, теорий и нерешенных проблем. При этом сложившийся уровень научного познания, принятые наукой парадигмы, теории и методы, сохраняя стабильность науки и тем самым определенную инерцию мысли, могут и препятствовать выдвижению новых идей. Так, Лоренц и Пуанкаре до Эйнштейна обобщили, перенесли принцип относительности на электромагнитные процессы, а также получили основные соотношения между массой, размерами и скоростью движения тела, сохраненные потом Эйнштейном и в теории относительности. Полученные ими результаты основывались на принятых в то время наукой представлениях о неподвижном эфире, заполняющем все пространство и служащем привилегированной системой отсчета. Представления об эфире, в свою очередь, хорошо согласовывались с обоснованным еще Ньютоном пониманием пространства как единой для всего мира трехмерной протяженности и времени как абсолютной равномерно протекающей универсальной длительности. Поэтому для них не существовало никакой необходимости, не было аргументов для пересмотра старых представлений о пространстве и времени, осуществленного позже в теории относительности; состояние тогдашней научной мысли определило их позицию в этом вопросе.
В то же время история науки показывает, в частности, и на приведенном выше примере, что нерешенные проблемы в конце концов решаются и что это происходит как результат совместных усилий всего сообщества ученых, которое и является субъектом надындивидуального уровня познания. Данный уровень познания, выражающий общее, стабильное, определяющее развитие науки на целую историческую перспективу, изучают философия и методология научного познания, достаточно в этой связи назвать концепцию третьего мира Поппера или теорию парадигмы Куна.
Особенности индивидуального уровня научной деятельности изучаются главным образом в рамках психологии научного творчества. Психология научного творчества выделяет следующие основные этапы: первый этап (сознательная работа) - подготовка, т.е. попытка на основе известного знания и апробированных средств, методов, а также собственного познавательного опыта решить проблему, задачу; второй этап (бессознательная работа) - созревание, т.е. инкубация будущей идеи решения, которая вызревает, кристаллизуется в сфере бессознательного, поскольку попытки решить проблему традиционными апробированными средствами заходят в тупик, а сам ученый прекращает эти попытки и может вообще переключиться на решение другой задачи; третий этап (переход бессознательного в сознание) - вдохновение, догадка, т.е. в результате инсайта, или так называемого интуитивного озарения, из форм бессознательного в сознание поступает готовая идея изобретения, открытия; четвертый этап (сознательная работа) - логическое оформление, разработка и проверка выдвинутой идеи. При этом наряду с такими традиционными для психологии категориями, как понятия мотивационно-эмоциональной сферы, умственных действий, догадки и т.д., применяются другие понятия, позволяющие в анализе познавательной деятельности выйти к социальным условиям, социокультурным предпосылкам познания, например, когнитивное соответствие, социальная категоризация и пр.
В методологии приведенная выше схема познавательного цикла на индивидуальном уровне научной деятельности определенным образом модифицируется с учетом взаимодействия субъекта индивидуальной деятельности с научным сообществом, с другими субъектами научного познания. С точки зрения методологии науки можно выделить, по крайней мере, следующие основные этапы: этап осмысления или формулировки проблемы или задачи, предполагающий ознакомление с работами предшественников или современников, посвященными избранной научной теме; этап решения проблемы или задачи, при этом имеется в виду возможность получения не только положительных, но и отрицательных результатов; этап разработки, доказательства и «внедрения» полученных результатов, требующий соответствующего признания со стороны научного сообщества. Данная схема учитывает, что реализация субъект-объектного отношения возможна лишь при условии реализации субъект-субъектного отношения. Именно субъект-субъектное взаимодействие, осуществляющееся и как общение, диалог, т.е. непосредственный обмен знаниями, идеями, способами, методами исследования, установками, совместное обсуждение гипотез, критическое столкновение мыслей и т.д., и как процесс приобщения ученого к достижениям в соответствующей области научного знания, обеспечивает включение в индивидуальный познавательный процесс надындивидуального уровня научной деятельности.
Ясно, что подходы к изучению научной деятельности, научного познания, вырабатываемые в методологии научного познания и психологии научного творчества, различаются и в то же время определенным образом дополняют друг друга. Эта взаимная «дополнительность» указанных наук обусловливается природой самого научного познания, которое осуществляется через взаимодействие, взаимную корреляцию индивидуального и надындивидуального уровней познавательной деятельности. Иными словами, комплексность изучения познавательной деятельности в науке имеет основание, вытекает из особенностей когнитивной структуры науки; взаимопроникновение индивидуального и общего в научном познании вызывает взаимопроникновение философского, методологического, психологического и других подходов в изучении научного творчества. Центральная характеристика научной познавательной деятельности, а именно процедура получения нового знания, т.е. природа научного творчества, объясняется не только и не столько интимными процессами, происходящими в психике отдельного ученого, сколько сочетанием общего и отдельного, взаимодействием общих условий развития науки и индивидуальных усилий конкретных ученых.
4. КОГНИТИВНОЕ И СОЦИАЛЬНОЕ В НАУЧНОМ ПОЗНАНИИ
Исследование научного познания как только когнитивного, сама логика такого рассмотрения вне связи с социальным, в отвлечении от социального недостаточны. Оказывается, целый ряд проблем: проблема творчества, производства нового знания, проблема соизмеримости старых и новых теорий, вопросы научного метода, методологического регулирования научной деятельности, стиля мышления и др. остаются до конца невыясненными без изучения социальных характеристик научного познания. В связи с этим необходим учет социокультурного аспекта в анализе гносеологических и методологических параметров научного познания.
Выше отмечалось, что социальная сторона научной деятельности изучается социологией науки, проблематика которой группируется вокруг вопросов функционирования науки как социального института, взаимоотношения науки и других подсистем общества, включая социальные аспекты когнитивных процессов, исследуемых социологией научного знания. В этом случае рассматриваются важные для понимания процесса развития общества и науки проблемы: воздействие общества на науку, обратное влияние науки на жизнь общества, его основные элементы (политику, общественное сознание, образование, искусство и т.д.). Кроме того, социология исследует науку изнутри, т.е. рассматривает социальные механизмы формирования института науки, социальные отношения в научных коллективах, социальные ценностные ориентации, идеологические и материальные факторы стимулирования научного труда, социально-экономический эффект научной деятельности и т.д. Такого рода анализ социального предстает главным образом как анализ внешнего, внешней социальности научной деятельности, которая совсем или только в небольшой степени проявляется во внутренних характеристиках собственно процесса научного исследования.
Социальное действительно выступает в известной мере внешним по отношению к процессу научного творчества, которое осуществляется, прежде всего, под знаком гносеологических, логических и методологических требований к познавательной деятельности. В частности, одним из важнейших методологических требований является избавление исследования в науке от разного рода искажающих истину влияний на него субъективных пристрастий, ложных идеологий, экономической или политической конъюнктуры и т.д., поскольку главная цель науки - достижение объективного, истинного знания. Научное познание, несомненно, должно сохранять определенную автономию в обществе, чтобы не возникла ситуация борьбы с генетикой и кибернетикой, как это было в СССР, или ситуация создания арийской физики, как это было в нацистской Германии. Именно в этом смысле идет речь о гносеологическом, логико-методологическом фильтре, включающем в себя совокупность исторически вырабатываемых критериев научности, которые и позволяют контролировать действие социокультурных факторов. Можно сказать, всегда является актуальной поставленная еще Ф. Бэконом задача очищения познания от идолов рынка и театра.
В то же время общество, социальное в форме непосредственного административного управления, экономических рычагов, политики, идеологии, морали оказывают определенное воздействие, часто очень существенное, на развитие науки. Это воздействие носит сложный и противоречивый характер, обусловливаемый как сложным строением общества, поскольку его специфические структурные элементы по-разному влияют на науку, так и сложным устройством самой науки, в том числе и социального аспекта научной деятельности. В связи с этим важно различать несколько уровней социального в научной деятельности, начиная от внешних социальных факторов, влияющих на науку извне, и кончая внутренней социальностью науки, которая теснее всего связана с когнитивными процессами. Иными словами, надо учитывать, что само социальное представляет собой достаточно сложное образование.
В нем можно выделить: 1) совокупность циркулирующих в обществе классовых, национальных и групповых ценностных ориентаций, идеологических и социально-психологических установок и т.п., имеющих общий характер и влияющих на науку как на социальный институт, показывающих включенность социального института науки в систему экономических, политических и других отношений общества; 2) совокупность ориентации и установок более узкого значения, принятых, прежде всего, в рамках самой науки, т.е. социальные, нравственные, идеологические и другие отношения внутри социального института науки; 3) наконец, социально-психологические, нравственные, идеологические и др. характеристики индивидуальной научной деятельности, что составляет, гак сказать, социальную вооруженность отдельно взятого ученого как субъекта научного исследования. При этом надо учитывать, что данная социальная вооруженность отдельно взятого ученого также обладает сложным строением. Так, поскольку ученый работает в рамках общества и культуры, социального института науки, того или иного научного коллектива, социальной группы, постольку на социальные характеристики ученого, безусловно, накладывают в той или иной степени свой отпечаток указанные уровни социальности; «в социальном мире ученого» содержатся социальные нормы и ценности, присущие обществу и культуре, нормы и ценности, характерные для науки как социального института, например, ориентация на истину, повышенный интерес к исследовательской деятельности и т.д., ориентация на успех своего научного коллектива, исследовательской группы и, наконец, личные ценности и ориентации, складывающиеся в процессе собственной биографии, индивидуального жизненного опыта.
Заметим, что, между выделенными уровнями социального, взаимодействующего с системой научного познания нет никаких перегородок. Каждый ученый выступает носителем не только социально-индивидуального, но и социально-особенного и социально-всеобщего, поскольку он руководствуется в своей личной обыденной жизни, поведении, непосредственно в процессе исследовательской работы не только индивидуальными, но и коллективными, цеховыми, и общегосударственными, национальными, и общечеловеческими ценностями. И в то же время необходимо учитывать специфику разных уровней включенности социального в процесс научной познавательной деятельности, специфику бытия и модификации социального на разных «этажах», стадиях, элементах, формах и т.д. научного познания. Можно выделить своего рода спектр взаимных связей общества и науки, социального и когнитивного, в котором данное взаимодействие меняется от чисто социальных связей, когда наука предстает в своем социальном качестве как только социальный институт, до связей, в которых теснее переплетаются социальное и познавательное, когнитивное.
Так, можно выделить, по Е.А. Мамчур, понятия социальной природы познания, социокультурной обусловленности и социокультурной детерминации, которые как раз и выражают углубление взаимосвязи социального и когнитивного; в понятии социальной природы познания отражается тот факт, что субъектом познания является общество, социокультурная обусловленность познания означает более глубокую связь между социальным и когнитивным, а социокультурная детерминация раскрывает то обстоятельство, что социальные факторы играют роль механизмов развития научного познания, его движущих сил, т.е. связь социального и когнитивного становится наиболее тесной.
Взаимное влияние, взаимопроникновение социального и когнитивного имеет место не только в науке, но в других видах мыслительной деятельности человека, например, в философии, мифологии, искусстве. Причем степень такого рода взаимопроникновения выше в ненаучных формах познания, чем в науке, а в гуманитарных и общественных областях научного познания сильнее, чем в естественных. Это вполне понятно, поскольку там сильнее переплетаются ценностные и истинностные, содержательные стороны мыслительной деятельности, социально-классовые, идеологические и объективно-истинностные установки.
Если говорить об общественных и гуманитарных науках, то в них вообще предметом когнитивного, познавательного отношения становится само социальное, жизнь общества во всех ее проявлениях, включая феномены духовной, моральной, ценностной и т.д. активности человека, субъекта. Иными словами, в данных областях знания, духовной культуры! проще и сильнее, неразрывнее устанавливаются содержательные связи между социальным и когнитивным таким образом, что в самом мыслительном содержании, в когнитивном обнаруживается социальное. В естественнонаучном же познании социокультурное влияние всегда опосредовано философией, стилем мышления, нормами, идеалами, т.е. не может быть непосредственных переходов от социальных, культурных условий к процессу и результатам научных исследований.
Исключением являются случаи непосредственного социального заказа, когда власть, идеология прямо вмешивалась в дела науки. Всем известен диктат религиозной идеологии в средние века или верховенство политической идеологии в над наукой в советское время. В таких условиях ученым приходилось подчиняться данному диктату и «корректировать» подтасовывать содержание своих научных трудов, особенно в области социогуманитарных наук, чтобы привести их в соответствие с теми или иными положениями господствующей идеологии. Такого рода «коррекция», несомненно, имела отрицательные последствия для науки, поскольку вступала, как правило, в противоречие с требованиями научности, истинности исследования. В целом же связи социального, культурного и когнитивного в научной деятельности носят сложный характер, опосредованы мировоззренческими, философскими, идеологическими и другими ценностными установками. Именно сложность, опосредованность данных связей служит своего рода гарантией от искажающего влияния социального на когнитивное, на содержание научного знания. Поэтому социокультурное влияет скорее не на содержание, а на форму, способы организации научной деятельности, т.е. прямо и непосредственно социокультурные реалии не переходят в содержание научного знания.
Для философии и методологии науки важна проблема социальной детерминации науки, и прежде всего, механизм воздействия социокультурных факторов на научное познание, поскольку такое воздействие, пусть даже опосредованное, имеет место. В этой связи важно исходить из деятельностного подхода к науке, т.е. из понимания науки как специализированного вида деятельности. Иными словами, не совсем корректно видеть в науке только систему знания, забывая об остальных ее элементах.
Представление о науке как особом виде деятельности позволяет объединить все аспекты науки: систему знания, явление культуры, разновидность духовного производства, социальный институт, специфическую социальную коммуникацию и т.д. В результате появляется возможность более конкретно рассмотреть само социальное, которое выступает с этой точки зрения не только как внешняя сила, внешний фон по отношению к познавательному в научной деятельности, но и как элемент познавательного, как внутренняя сторона познания. Деятельностный подход в анализе роли социокультурных факторов позволяет учесть «социальную нагруженность» основных- элементов системы научной познавательной деятельности, в числе которых присутствуют субъект, объект, мотивы и интересы, средства, результат, цель, процесс познания.
Перечисленные элементы можно расположить внутри определенной шкалы, на одном конце которой будут объект и результат, существующие в системе научной деятельности в форме знания и по своему предназначению призванные выражать объективную, т.е. не зависящую от человека и общества истину, и в силу этого в наименьшей мере подверженные – по крайней мере, ученые стремятся к этому - воздействию со стороны социального, социокультурных условий осуществления познания, на другом -субъект, мотивы, интересы, прямо и непосредственно погруженные в социальный контекст. Промежуточное положение занимают средства, цели и процесс исследования, поскольку они образуют своего рода поле взаимодействия социального и когнитивного в научной деятельности.
Содержание научного знания как элемента научной познавательной деятельности должно ограждаться от искажающих влияний социокультурных факторов, оно должно сохранять определенную «инвариантность» по отношению к социальному контексту. Данное требование справедливо также и по отношению к социальному и гуманитарному познанию, применяющему специфические в сравнении с естествознанием исследовательские средства. Так, науки, использующие так называемые герменевтические исследовательские процедуры, направленные на учет, постижение в ходе исследования межличностных, индивидуально-личностных характеристик и восприятий социального бытия и дающие таким образом их осмысление (выявление смыслов), понимание и истолкование, в конечном счете должны также обеспечивать их адекватное, объективно-истинное отражение. Иными словами, в содержательной сфере знания научное познание стремится к автономности по отношению к социокультурным факторам. Только при этом условии выполняется основное требование научности исследования - объективность.
5. ОСНОВАНИЯ НАУКИ
Термин "основание" означает необходимое условие, которое служит предпосылкой существования каких-либо явлений (следствий) и способно объяснить их наличие. Процесс нахождения и изучения оснований и выведения из них следствий называется в современной науке обоснованием.
В применении к науке и научной деятельности основаниями служат некоторые фундаментальные условия, обеспечивающие укорененность науки в системе культуры. Выше отмечалось, что существуют потребности техногенной культуры и цивилизации, которые накладывают своеобразный отпечаток на пути и способы развития современной науки, на ее методологические схемы и т.д. Вместе с тем данная цивилизация обусловила появление технических наук, она же привела к усилению экспансии науки в различные сферы общественной жизни. Здесь, в цивилизационных условиях, коренятся многие характеристические черты современной науки.
В то же время исследователи науки указывают, что ее основаниями являются фундаментальные регулятивы научной деятельности, формирующие ее направленность на получение достоверных знаний и на их применение в социальной, технической, гуманитарной практике.
Основания науки - это историческое понятие, содержание которого меняется и преобразуется вместе с ходом развития культуры и с изменением роли науки в жизни общества. К тому же надо учитывать, что наука - это комплексное явление, она представляет собой гетерогенный (неоднородный) феномен, объединяющий в некоторую целостность сложившиеся структуры знаний, способы их производства, а также сложившиеся специализированные организации и их взаимодействие с имеющимися социальными институтами. Поэтому вопрос об основаниях науки вырастает в сложную проблему и требует многопланового исследования.
В современной литературе поиск ответа на поставленный вопрос ведется в русле определенного упрощения, связанного с учетом ведущего качества науки, каковым является ее определение как особой познавательной деятельности. В этой ситуации речь идет о выявлении обязательных оснований, легитимирующих научное познание и узаконивающих статус его главного продукта - систем знаний. Законные права научного знания подтверждаются на базе онтологических и эпистемологических критериев, обеспечиваются выводами из интеллектуальных инициатив культурологии, доказываются требованиями практики, выводятся из аксиологического дискурса, определяются конструктивными фигурами логики и информатики.
Исследователи выделяют три главных компонента оснований науки: идеалы и нормы исследования, научную картину мира и философские основания науки (B.C. Степин, В.П. Кохановский, Т.Г. Лешкевич).
Идеалы и нормы исследования связаны с характеристикой ведущих сторон научной деятельности: со способами объяснения и описания; с доказательностью и обоснованностью знания; с построением и организацией знаний. B.C. Степин подчеркивает, что в совокупности они образуют своеобразную схему метода исследовательской деятельности, обеспечивающую освоение объектов определенного типа. (См: Степин B.C. Философия науки. Общие проблемы. М., 2006. С. 192).
Среди идеалов науки есть такие, которые затрагивают все ее исторические стадии и все дисциплинарные области. К ним относятся, например, требования о доказательности знаний, полученных научным путем, о концептуальном и логическом характере доказательств, о выявлении существенной определенности изучаемых объектов и др. Имеются также исторически изменчивые идеалы и нормы исследования, связанные с господством того или иного стиля научного мышления, утверждающегося в науке в определенное время. Показательно, что требование строго однозначного описания объектов в классической науке сменилось требованием вероятностного описания объектов в неклассической науке, приступившей к изучению сложных и сверхсложных явлений. Некоторые идеалы и нормы специфичны для предметных областей конкретных наук. Так, концептуальное описание в большей мере характерно для социальных и гуманитарных наук, а количественное описание преобладает в естественных науках. Требование экспериментальной проверки теорий характерно для эмпирических наук, но для математики и логики оно не всегда обязательно.
К числу самых общих идеалов науки относится требование реализма, выражаемое также как требование объективности научного знания. С момента своего зарождения наука обращается к изучению реального, а не мнимого мира, вырабатывает различные способы и средства удостоверения объективной реальности. Наука стремится к преодолению фикций, вытесняет из своей сферы ложные идеи, пустые фантазии, бездоказательные знания. Ученые желают иметь дело с реальным миром и учитывают, что знания о реальности обретают свойство истинности.
В науке реальность фиксируется в форме объектов, которые в принципе доступны эмпирическому познанию, вплетены в опыт (в повседневную жизнь, в производственную деятельность, в научно-экспериментальный процесс). Собственно научное познание связано с проблематизацией опыта, с постановкой различных вопросов об объектах изучаемой реальности. Среди них ставятся вопросы такого типа: как возможно выделение объекта из окружающей среды? как произвести идентификацию объекта? что является условием изменчивости состояний объекта? как различить существенные и несущественные изменения? что является необходимым, а что случайным в динамике объекта? Круг подобных вопросов чрезвычайно широк. Поиск ответов на них снимает неопределенность проблемного поля изучаемой реальности. В конечном же счете увеличивается объем научных знаний и возрастает емкость постижения реальности.
Наука нового времени начинала с идеала статичной реальности, которая не затронута процессами становления и развития. Исходя из этого подчеркивалась устойчивость структуры материальных объектов (атомов, молекул), а также утверждалась устойчивость фундаментальных законов, которые сводились к законам механики. В дальнейшем, уже в XIX в., в науке формируется историко-эволюционный стиль мышления, принципы которого легли в основу изучения таких сфер реальности, как жизнь и социум. Философская разработка принципов этого стиля мышления нашла выражение в концепции Гегеля. Он отмечал, что реальность имеет оправдание в соотношениях сущностей, в их изменчивости, в самоотрицании. Для него реальность — это не статика наличности, а процесс реализуемости и к тому же результативный процесс. Универсальное понимание реальности предполагает учет отношений, взаимопереходов и самопревращения сущего. Подобная реальность обладает свойством выхода за свои пределы, способна изменяться в свое иное.
Добавим, что в науке берется во внимание такая реальность, которая «скоррелирована» с познавательными способностями и возможностями человека. Она открывается нормальным показаниям органов чувств, рассудку, разуму и интуиции человека. Кроме естественных, врожденных познавательных способностей люди осваивают и пускают в ход искусственные познавательные ресурсы и получают доступ к «расширенной реальности». На такой основе они обретают новые возможности в освоении мира как в духовной, так и в практической сферах.
В науке XX столетия ведущую роль приобрел системно-организационный стиль мышления, принципы которого обеспечили постижение объективной реальности как сложной сети взаимодействий и отношений. Сложно организованные структуры оказались в центре научного познания.
Всякая организация предполагает структурную упорядоченность динамично изменяющихся объектов. Благодаря организации объекты (системы) способны поддерживать определенное равновесие с окружающей средой, сохраняя свое устойчивое существование. Вместе с тем организация проявляется в способности к перестройке иерархии внутренних структур объектов, а также в изменениях линии поведения при изменении внешних условий. Учитывая это качество объектов, исследователи говорят о самоорганизации, которая поддерживается в процессе обмена со средой веществом, энергией и информацией. В .современной науке выявлено, что самоорганизующиеся объекты характеризуются повышенной мерой активности. Они способны перестраивать себя, переходя к новым принципам функционирования, они избирательно относятся к среде, способны приобретать свойство опережающего отражения среды. Некоторые из них на данной основе могут играть роль факторов, детерминирующих преобразования среды (У. Росс Эшби, Г. Хакен, В.П. Милованов и др.).
В современной науке интенсивно осваивается еще один образ реальности, который связан с практическим контекстом научной деятельности, с превращением практики в прямой фактор развития науки. Новый образ реальности внедряется, к примеру, в ход решения задач управления глобальными процессами или в процесс разработки стратегии биосоциального развития. Главным условием порождения подобной реальности является антропогенная деятельность, т.е. сам человек и создаваемые человечеством социальные организации и их практическая и производственная оснащенность. Сегодня речь надо вести о масштабной практике, которая обращена к Большой науке; а такая наука включает социально-гуманитарные требования, отражает и реализует данные требования, решая задачи охраны природной среды, выстраивая стратегии ликвидации глобального голода, участвуя в разработке проектов распространения образования и культуры в слаборазвитые страны, исследуя возможности безотходного производства и т.д.
Реакция на социальные и гуманитарные требования инициирует интенсивный процесс объединения естественных, технических, социальных и гуманитарных наук, поскольку масштабная практика требует комплексных научных решений. Добавим, что в рамках новой реальности нет резкого разделения между субъектом и объектом деятельности. Целевые установки, социальные детерминанты, согласование интересов людей и т.д. входят в структуру решаемой задачи; они включаются также в структуру научного познания, которое объединяет объективное и субъективное начала в развивающийся комплекс деятельности. При этом методологические схемы описания и объяснения существенно модифицируются. Здесь на первый план выдвигаются проективная и прогностическая стороны научной деятельности. Соответственно, номологическая детерминация (действие объективных законов) дополняется в схемах познания программной и управляющей детерминацией. Освоение новых типов детерминации выводит человеческую деятельность на разработку грандиозных программ технико-экономического, социально-политического, гуманитарного характера (создание глобальных систем связи, масштабных транспортных систем, систем мирового образования, создание эффективных межгосударственных союзов и корпораций и пр.). Опора на новые методологические схемы обеспечивает оптимальное целеосуществление для человека и человечества в условиях сложного разнонаправленного мира современной практики.
Научная картина мира. Ее формирование идет на уровне фиксации системных характеристик изучаемой реальности. Обобщенный способ выражения подобных характеристик позволяет обозначить представление о том «мире», с которым имеет дело определенная отрасль науки. В этом смысле говорят о «мире физики», «мире биологии» и т.д. В таком же ключе принято говорить о физической картине мира, биологической картине мира и пр.
B.C. Степин отмечает, что среди обобщенных характеристик, включаемых в специальные картины мира, фигурируют представления: 1) о строении определенной реальности и о фундаментальных объектах, лежащих в основании соответствующего фрагмента мироздания; 2) о типологии изучаемых объектов; 3) об общих закономерностях их взаимодействия; 4) о пространственно-временной структуре реальности. По Степину, любая картина мира связана с выдвижением системы онтологических принципов, с помощью которых эксплицируется образ соответствующей реальности и которые входят в структуру фундаментальных научных теорий соответствующих дисциплин. Философы науки и ученые различают, например, принципы механической, электродинамической, квантово-релятивистской картин физического мира, сменявших друг друга в период с XVII по XX в. В ходе подобных перемен преобразовывалась принципиальная основа физических теорий (физики отказались от модели неделимого атома, от концепции абсолютного пространства-времени, от однозначного лапласовского детерминизма). Аналогичным образом дело обстояло в химии, биологии, социологии и т.д. В соответствующие картины мира вводились новые объекты (например, новые химические элементы, новые структуры живого: клетка, геном, экосистема), а также новые типы взаимодействий и типы законов. На такой основе создавались новые модели теоретического описания и объяснения явлений биологического, химического, социального миров.
Указанные перемены в науке осуществляются обычно в своеобразной борьбе идей, связаны со столкновением разных объяснительных подходов, с противостоянием конкурирующих теорий. Напомним, к примеру, о борьбе ньютоновского и лейбницевского подходов к обоснованию принципов механики, о борьбе ламаркизма и дарвинизма в сфере объяснения эволюции видов животных, о противостоянии теории стоимости Маркса и теорий английских экономистов.
Разработка понятия «картина мира» связана с исследованием ее функций в научном познании. Можно констатировать, что она участвует в систематизации знаний конкретных наук, объединяя их принципы и теории в рамках обобщенного подхода к предмету исследования (квантово-механический подход, генетико-информационный подход и др.). Картина мира способна также играть роль исследовательской программы, направляя постановку задач эмпирического и теоретического уровней, поддерживая выбор определенных средств их решения. Она еще может выступать и в качестве средства объяснения, замещая в определенных ситуациях научную теорию. Это случается тогда, когда теория пока не создана, а изучение новых объектов уже ведется и экспериментальные факты накапливаются. Так, электродинамическая картина мира стала базой выдвижения объяснительных гипотез о природе катодных и рентгеновских лучей, направляя постановку экспериментальных задач в данной области. В свою очередь, полученные на такой основе материалы способствовали экспликации электрической картины мира путем ввода в нее нового объекта — электрона.
Своеобразную роль играет картина мира в формировании концептуального пространства для обмена знаниями между различными дисциплинами. Это происходит благодаря тому, что картина мира создается на высоком уровне обобщения, и ее объекты, принципы могут получать интерпретацию в понятиях и методах разных наук. На такой основе возникает, например, возможность переноса «технологии» качественного описания и качественного анализа объектов через указание и выделение набора характеристических свойств и параметров. Качественный метод познания, появившись в химии и используя зависимость свойств химических веществ от их структуры, получил признание и в биолог ии, и в психологии, и в социологии и т.д., т.е. в тех научных дисциплинах, где можно объяснить качественное бытие объектов с помощью структурного подхода. Подобный перенос осуществляется также из области биологии. Некоторые объекты и принципы биологической картины мира, такие как ценозы и эволюция, широко применяются в других областях научного познания, там, где соответствующая картина мира совместима с названными объектами и принципами. Понятия о специфических ценозах и о законах эволюции используются в области языкознания, техникознания, в социальных исследованиях и т.д.
Новым явлением современной науки стало формирование картин мира, не имеющих жесткой отраслевой или дисциплинарной «привязки». Они имеют общенаучный статус и обращены к миру как определенному универсуму или выделяют некий аспект подобного универсума, характеризуя его с помощью весьма общих принципов и законов, применимых к объектам, которые встроены в междисциплинарную матрицу знания. К таковым относятся информационная и системная картины мира.
Ядром формирования информационной картины мира является понятие «информация», которое приобрело общенаучный смысл. Содержание этого понятия включает и гносеологический, и онтологический аспекты. В первом случае речь идет о том, что есть информационная составляющая процесса познания, которая состоит в снятии его неопределенности (согласно Л. Бриллюэну). Онтологический аспект информации покоится на двух основаниях: структурном и функциональном. Структурное основание учитывает неоднородность любых объектов и возможность объективного отражения неоднородности (разнообразия). Функциональное — фиксирует процессуальный характер информации, участвующей в управлении. В то же время управление связывается с целевым процессом и с передачей, а также с интерпретацией сигналов.
Существенно, что информационная картина мира предстает как чрезвычайно емкая. Ее объекты и принципы востребованы в самых разных областях науки, выступают фундаментом многих новых теорий и методов познания (теория регуляции, теория алгоритмов, метод черного ящика и др.). Вместе с тем информационный подход нашел свое место в регуляции и оптимизации практики, в разработке методов эффективного решения целевых задач, и среди них - задач социального порядка, т.е. там, где идет поиск эффективных ресурсов социального управления. С информацией и информационными ресурсами связывают также движение к новому тину цивилизации, обозначаемой понятием «информационное общество».
Говоря о системной картине мира, надо вспомнить о предметной области системных наук, о принципиальных характеристиках системного подхода и общей теории систем. Базовым регулятивом формирования системной картины мира является принцип системности. По своему содержанию он ближе всего стоит к принципу связи.
Требование выявлять связи между объектами того или иного рода относится к числу основных, на которые опирается принцип системности. Однако между принципом системности и принципом связи нет полного совпадения. В философско-методологической литературе встречается иногда утверждение: системность - это и есть связанность объектов. Тем не менее подобное определение недостаточно, поскольку не фиксирует специфического признака системности и не дает средств для выявления самостоятельного значения принципа системности в научном познании, в оформлении современной картины мира.
В качестве критерия системной определенности объектов нередко используется различие между системообразующими и несистемообразующими связями. Некоторые исследователи указывают, например, на интегративные связи как базовые для исследования системных объектов. В других случаях к системообразующим относят связи органического типа в отличие от механических связей. Системные связи отождествляются также с локализующими связями. В этом случае подчеркивается целокупный характер системных объектов, их отграниченность от других систем и от среды вообще. Система рассматривается и как объект, имеющий интенсивные внутренние связи и относительно слабые внешние взаимодействия.
Уместно подчеркнуть, что выявление главного условия системности является грудной проблемой. Очевидно, однако, что уточнение базового признака системности следует искать на путях последовательной конкретизации представления о связанности вещей. Из этого проистекают и особенности системного моделирования реальных объектов, а также моделирования деятельности по созданию искусственных систем. Необходимо учитывать, например, что хотя системность и предполагает взаимодействие объектов, но лишь такое, которое строится на основе избирательного сродства и осуществляется по законам подобного сродства. В системах доминирует особый тип обусловленности объектов, в рамках которого последние превращаются в носителей совместных функций, поддерживающих существование целого. Так, в товарном обществе независимые друг от друга производители товаров, налаживая обмен, вступают в необходимые отношения, при которых отдельные частные работы реализуются как звенья совокупного общественного труда. Аналогично дело обстоит в живом организме, где функционирование отдельных органов образует связанную цепь в жизнеобеспечении всего организма.
Каждая система дифференцируется на компоненты и элементы, однако в системе элементы подчинены определенному функциональному единству, функциональной целостности. Причем целостный уровень играет специфическую детерминирующую роль в отношении своих элементов. Именно на уровне целого распределяются функции между составляющими системы, а наличные структуры приспосабливаются к характеру функционирования целого.
Характерной чертой системного целого является функциональная природа согласованного, скоррелированного действия элементов. О функциональности правомерно говорить, когда объекты включены не только в физико-химические изменения, но также в процессы регуляции, которые играют весьма важную роль в обеспечении самосохранения системы при разнообразных внешних воздействиях на нее. Поэтому специфику определения системного бытия нельзя сводить к отражению структуры, упорядоченных, закономерных отношений между множеством компонентов, равно как и к описанию связей между элементами различной природы. Указание на эту характеристику системы фиксирует лишь ее предпосылку и абстрактное условие. Реально же система существует тогда, когда складывается внутренняя полнота отношений между элементами, проявляющаяся в том, что каждый элемент становится необходимым для устойчивого существования соответствующей целостности.
Некоторые исследователи подчеркивают различие и даже противоположность между понятиями "целое" и "система". Так, В.Н. Южаков полагает, что целое охватывает весь объект, тогда как система - это лишь некоторый "срез" объекта, в рамках которого объединяется все необходимое и достаточное для обеспечения целостных функций. В этом утверждении справедливо отмечается нетождественность понятий "объект" и "система". Однако главный смысл понятия "система" состоит не в аспектном отражении объекта, не в выявлении "среза" объекта. Его методологическое и моделирующее назначение заключается в характеристике особого динамического качества объектов, в фиксации совокупности изменений, специфика которых выражается представлением об их функциональной согласованности и целостности.
Целостность как система имеет смысл особого универсума, включающего: 1) действие интегративных законов, которые образуют уровень сверхдетерминации над уровнем отдельных зависимостей между отдельными элементами; 2) создание поля взаимной функциональной обусловленности, функционального сродства для собственных компонентов системы. Характерно и то, что в рамках данного универсума выделяются различные качественные уровни со специфическими функциональными отношениями. Поэтому в системе мы имеем дело со сложным универсумом. Он складывается к тому же из разнообразных по своей интенсивности внутренних связей. Причем следует различать два основных случая: 1) системы со слабыми связями, которые включают в свой состав и особый класс вырожденных систем; 2) системы с интенсивными функциональными связями, в число которых входят, например, сложноорганизованные системы, обладающие высокой степенью внутренней и внешней активности. Они обладают также известной структурной избыточностью, которая превращается в фактор обеспечения надежности и устойчивости систем. Благодаря структурной избыточности системы рассматриваемого типа приобретают способность к переключению режима своего поведения в весьма широких пределах, изменяя при этом внутреннее состояние элементов, перестраивая связи между ними и т.д. Они способны также осуществлять отбор состояний, благоприятствующих достижению некоторого фиксированного результата.
Функциональные системы относительно автономны от окружающей среды, вместе с тем им свойственна динамика устойчивых изменений. Иногда в современной литературе высказывается предположение о том, что стабильность системы детерминируется ее структурной устойчивостью. Такого мнения придерживаются, например, B.C. Тюхтин, М.С. Каган и некоторые другие исследователи. Однако эта точка зрения вызывает возражения. Она не учитывает, что устойчивость структур весьма относительна. Реальные системы в процессе функционирования и развития способны изменять собственную структуру. В то же время отдельные элементы системы могут пребывать в достаточно устойчивых состояниях. Здесь не учитывается и то обстоятельство, что не только структура ответственна за коренные качественные изменения в системе, за сохраняемость ее качества. В еще большей степени устойчивость системы определяется основным законом ее существования, который опирается на механизмы воспроизводства основных отношений в системе.
Воспроизводство не останавливает смены состояний системы, но предполагает их определенное круговращение. Функциональное круговращение осуществляется как циклическая смена состояний системы. Здесь есть начальное и конечное состояния, которые попеременно сменяют друг друга и находятся в устойчивой синхронной связи. Примеры тому дают функционирование Солнечной системы, системы товарного обращения, технических систем с обратной связью и др. Воспроизводящиеся отношения в системе отражают действие механизмов ее целостной самодетерминации.
Говоря о принципе системности как методологическом регулятиве научного исследования, необходимо иметь в виду следующие онтологические характеристики, в которых проявляется природа системности: качественную дифференцированность и целостную интегрированность элементов, функциональную разделенность и необходимое взаимодополнение элементов в рамках определенного типа устойчивого, воспроизводящегося функционирования. Принцип системности, опираясь на эти характеристики, выступает исходным пунктом теоретического анализа специфического аспекта объективной обусловленности явлений. Содержание последней охватывается представлениями о функциональной целостности и самообусловленности объектов, об интегративном характере законов системного взаимодействия, о внутренней интенсивной организации системных процессов.
Тенденция универсализации научного знания имеет выход к созданию единой научной картины мира (ЕНКМ). Такая картина может выступать в качестве теоретического фундамента научного мировоззрения. Состав ЕНКМ образует система ответов современной науки на фундаментальные вопросы о бытии мира. С этими ответами вынуждены считаться все ведущие мировоззренческие концепции (материализм, идеализм, религия). Выводы науки рассматриваются при этом в качестве образцов автономного обобщения, не претендующего на решение всех мировых загадок и всех тайн человеческого существования. В то же время и сама наука стремится обосновать свои выводы из определенных общекультурных схем деятельности и их категориального обобщения, оставляя место для вненаучных культурных ориентиров, для соответствующих им способов понимания, для развития ценностных и экзистенциальных стратегий человеческой жизни. Общий культурный фон науки в данном случае сохраняется. Она принимает в качестве собственной базы, объясняющие и обосновывающие схемы рационального мышления.
Добавим, что в этом направлении наука выстраивает достоверные и гипотетические знания о структуре и динамике мироздания, о фундаментальных объектах и принципах их исследования. Так, в современной науке в качестве фундаментальных объектов физического мира берутся кварки, струны, вакуум, и его сложная структура. В качестве фундамента космического мира рассматривается «горячая» Вселенная, большой взрыв, инфлатонное поле и пр. Первоосновой жизни современная наука считает химические процессы, в которые включены сложноорганизованные макромолекулы определенного типа, а также уровневую организацию информационно-сигнального характера. Наука учитывает системные взаимодействия между живыми объектами, начиная от клетки и заканчивая биосферой Земли. В состав современной ЕНКМ входят также знания о происхождении и эволюции человека и человечества, которые охватываются концепцией антропосоциогенеза. Данная концепция дополняется в наше время званиями о культурных матрицах социального и индивидуально-личностного развития.
Удачной философской расшифровкой содержания ЕНКМ является концепция единства мира, базу которой составляет генетическая связь основных форм движения материи (Ф. Энгельс и др.). Философское обоснование ЕНКМ пополняется новыми идеями самоорганизации, глобального эволюционизма, онтологии развивающихся систем и др. Многообразие подобных идей позволяет развернуть творческий поиск в области обоснования принципа единства мира и единства научного познания, осваивающего этот мир.
Философские основания науки представляют самостоятельную форму организации фундамента науки. При этом речь идет о процессе офилософствования, складывающемся в самом научном познании, о принципах и категориях такого уровня обобщения, который выступает связующим звеном между научной и философской картинами мира и на котором обеспечивается формирование общих законов познавательной деятельности, а также создание общих категориальных структур мышления. Здесь открывается область широкой онтологической и методологической рефлексии над наукой, участниками которой выступают как философы, так и сами ученые. Итогом подобной рефлексии становится, например, выработка новых способов обобщения научного знания, создание методов структурного и функционального объяснения, разработка новой типологии научных законов, исследование роли случайности в научном познании и т.д.
Надо заметить, что в современной науке возникают дополнительные для традиционных философских исследований разделы, связанные с анализом категорий (теория категорий), с исследованием структур знания (методология создания баз знаний), с концептуализацией ведущих методов познания (разработка концепции дедуктивных и индуктивных наук и их методологического своеобразия) и др. В то же время наука продолжает черпать из философии образцы для гносеологической и методологической квалификации собственных новых результатов познания. В этой роли выступают принципы детерминизма, отражения, связи, развития, многообразия сущности и др. Кроме того, наука заимствует у философии сеть категорий, таких как вещь, свойство, отношение, качество, количество, закон, причинность, система, разум, рациональность, метод, истина, ценность, человек, культура и др.
Укажем также, что наука использует критический потенциал философии, приобщается к философской культуре критики, выводя последнюю из области мнений, субъективных предпочтений и ожиданий. В конечном счете, она включает критику в область исследования оснований, объективированных значений знания. На такой почве формируется собственный путь развития научных знаний, идет селекция плодотворных научных идей, гипотез и теорий. Показательна в этом плане знаменитая дискуссия в области квантовой механики, участники которой (Планк, Бор, Эйнштейн, Гейзенберг и др.) продемонстрировали высокий уровень понимания философских основ науки, вводя в физику обновленные принципы познания и онтологические категории (принцип дополнительности, принцип макроскопичности приборных установок, категории структуры и симметрии и т.д.). Создатели квантовой механики при всех их личных предпочтениях и даже амбициях стремились к надежному обоснованию новой области науки. И они участвовали в этом процессе, выступая в роли философов-ученых.
К сказанному добавим, что важно учитывать особое переходное положение философии в культуре. В этом состоянии она проявляет специфические возможности: синтезирует принципы, установки, духовный опыт разных областей культуры и помогает им найти точки контакта, взаимного понимания и признания. А наука наших дней особенно нуждается в подобном признании и понимании со стороны других участников культурного процесса. Более того, данная потребность возрастает из-за высокой меры абстрактности многих научных знаний, в силу их формализма и сложности искусственных языков, на которых излагаются научные знания. Качественный подход к исследованию научного познания во многом преодолевает указанный недостаток науки.
Философский вектор обоснования науки актуализируется еще и в связи с тем, что развитие науки то напрямую, то косвенно задевает глубинные интересы людей, внедряясь в перестройку их традиционной жизни. Соответственно возникает подчас тенденция к отторжению науки и ее достижений от сложившихся культурных форм жизни. В такой ситуации именно философия берется прояснить общекультурный смысл и значение специализированных форм научных знаний, исследует их на предмет совместимости с культурными ценностями нашего времени.
В дополнение к сказанному отметим, что философия служит базой исследования личностного контекста научной деятельности, и это свое предназначение она реализует, помогая осознать проблемы свободы творчества, ответственности ученого, раскрывая его деятельность в аспекте связи с культурными и цивилизационными вызовами эпохи. Подобное осознание важно сегодня в силу включенности ученых в разработки «сомнительного» характера: в создание сверхоружия массового уничтожения людей, в обоснование проектов риска для балансов естественной природы и жизнеобеспечения человечества и т.д. В таких условиях наука нуждается в серьезном философском дискурсе, в обсуждении вопросов личного выбора ученого, в обосновании нового культурного плацдарма деятельности ученого как личности.
6. СТАТУС НАУЧНОГО МЕТОДА
Раскрытие статуса метода начнем с выяснения смысла понятия метода. Формулировка его определения имеет большое значение для характеристики природы познавательной деятельности в науке, механизмов ее развития, условий эффективности научного познания, для разработки теоретической базы применения метода в науке.
Среди ученых можно встретить разное отношение к методу. Многие исследователи склонны утверждать, что выработка эффективного метода имеет большее значение, чем остальные компоненты науки. Так, к примеру, оценивал значение метода известный физиолог И.П. Павлов, который говорил, что метод - самая первая, основная вещь. От метода, от способа действия зависит вся серьезность исследования. Все дело в хорошем методе. При хорошем методе и не очень талантливый человек может сделать много. А при плохом методе и гениальный человек будет работать впустую и не получит ценных, точных данных. С другой стороны, имеет место утверждение, например, известного физика М. Борна, что в науке нет философской столбовой дороги с гносеологическими указателями, что мы находимся в джунглях и отыскиваем свой путь посредством проб и ошибок, строя свою дорогу позади себя по мере того, как мы продвинулись вперед.
Иногда скептицизм проявляется в более мягкой и осторожной форме, когда высказываются сомнения в возможности сформулировать определение научного метода. Джон Бернал, в частности, утверждал, что научный метод подобно самой науке не поддается определению. Он состоит из ряда открытых в прошлом как умственных, так и физических операций, ведущих к формулированию, нахождению, проверке и использованию ответов на общие вопросы, которые заслуживают постановки и могут быть разрешены на той или иной ступени развития общества. С этим утверждением нельзя согласиться. Конечно, представителю специальной науки совсем не обязательно исследовать природу метода и давать его определение, поскольку это - задача специалистов в области философии и методологии науки. Неверно утверждать, что в принципе невозможно понять сущность метода и зафиксировать ее в определении. Конечно, природа научного метода во всем, так сказать, ее объеме не схватывается одним, пусть даже удачным определением, но она раскрывается путем построения концепции метода, его некоторой теоретической модели.
Задача определения научного метода осложняется тем обстоятельством, что наука, как известно, располагает большим, если не сказать, бесконечным множеством самых разнообразных методов. Здесь и большая гамма теоретических и математических методов, и почти необозримая совокупность экспериментальных методов и методик, здесь также методы общенаучные и методы частные и т.д. С ростом научного познания множество научных методов становится все более мощным, поскольку постоянно возникают новые науки, теории и соответственно для нужд нового знания, новых дисциплин и теорий создаются все новые и новые методы.
Надо заметить, что в эту совокупность входят методы, значительно отличающиеся друг от друга по многим параметрам. Так, существует большая разница между теоретическими и экспериментальными методами. Надо также различать частные и общие методы. Есть важные отличия методов социальных наук от методов геологии и т.д. Например, проведение экспериментального исследования электропроводности каких-либо сплавов требует особых познавательных средств и действий, особой программы, организации исследования и, разумеется, отличается по этим параметрам от тех приемов, которые применяются в области теоретического анализа проблем так называемого «большого взрыва вселенной».
Подобное разнообразие научных методов имеет свои онтологические и гносеологические основания, является причиной определенных ограничений в применении методов в других, неспецифических областях научного познания. Невозможно, например, применение методов геологии в анатомии, но невозможно и обратное использование анатомических методов в геологическом познании. С другой стороны, несмотря на все их многообразие и различие, методы входят в единую систему научной деятельности, имеют общие онтологические и гносеологические основания. Поэтому они во всей своей совокупности образуют некоторое единство, единое множество, общность, относятся к классу научных методов; их единство, взаимная связь характеризуют собой специфичность, целостность познавательной деятельности в науке.
В самом деле, для осуществления эффективного исследования в какой-либо области научного познания применяются одновременно и во взаимной связи и индукция, и дедукция, и анализ, и моделирование. Иными словами, необходимо использование всего набора методов, которыми располагает наука. Ни один научный метод не применяется в научном исследовании как нечто самодовлеющее, изолированное, не связанное с другими средствами и методами. Ю.В. Сачков писал, что в конкретных научных исследованиях говорят о громадном разнообразии методов. Вместе с тем каждый из таких конкретных, реальных научных методов имеет нечто общее, что и позволяет их относить к рангу научных. Раскрытие и, оценка этого общего и образует характеристику научного метода в целом. Подобное определение научного метода позволяет не только выявить специфику научной деятельности, но и отличить таковую от подделок под науку, от простой веры в необычное и сверхъестественное. В этих словах выражена суть задачи по определению научного метода, а также ее значение для методологии науки.
Прежде всего, следует начать с разграничения способов получения знания в науке и во вненаучных видах деятельности. Среди последних необходимо различать близкие к науке обыденное познание и философию. Здесь же представлена и паранаука. Обыденное познание, как уже говорилось, носит главным образом эмпирический характер (его познавательный цикл не содержит развитых теоретических процедур исследования). Философское познание, наоборот, по преимуществу является теоретическим, его познавательный цикл реализуется, прежде всего, в теоретической работе с идеями, категориями, теориями, а эмпирические познавательные действия играют вспомогательную роль, целиком подчинены задачам теоретического анализа. Типический же для науки способ, метод получения знания находит свое выражение в сбалансированном познавательном цикле, который представляет собой динамическое единство, взаимную связь и взаимодействие эмпирических и теоретических процедур.
Повторим также, что условием успешного функционирования познавательного цикла науки является математическое обеспечение как теоретических, так и эмпирических познавательных действий, гарантирующее необходимую их строгость и точность. Из всего этого складывается целая совокупность исторически вырабатываемых, изменяющихся и в то же время в основных своих требованиях стабильных, сохраняющих устойчивость качественной определенности науки критериев. Подобные критерии и опирающийся на них познавательный цикл определяют лицо науки, позволяют отделить ее от ненауки, обеспечить развитие научного познания.
Принципиально иные подходы и основания исследования предлагает паранаука. Она базируется на древнем мировоззрении с характерным для него представлением о мире как поле действия природных, космических сил, стихий (их олицетворением являются обычно боги той или иной мифологии), в центре которого стоит человек, способный прямо воспринимать, постигать их смысл, природу и непосредственно на них воздействовать. Паранаука ставит своей целью, с одной стороны, открытие предельных оснований бытия, так сказать, высших тайн мироздания. А с другой стороны, носитель такого сакрального, мистического знания хочет, влияя на стихии, получить непосредственно осязаемый и существенный практический эффект, например, лечить болезни, читать чужие мысли, владеть левитацией, предсказывать судьбу и т.д. Очевидно, однако, что такого рода знание вступает в конфликт с критериями научности, например, критериями проверяемости и повторяемости.
Выше говорилось, что попытку уравнять в правах науку и вненаучные формы знания предпринял П. Фейерабенд. Тот факт, что паранормальные феномены не воспроизводятся и не поддаются проверке, он стремился объяснить укоренившейся в современном рационально-индустриальном обществе атмосферой антагонизма между человеком и природой. Парапсихические эффекты, согласно Фейерабенду, проявляются лишь при необычных и возбуждающих обстоятельствах. Их чрезвычайно трудно воспроизвести в лабораторных условиях. К тому же одни социальные факторы содействуют расположению духа, приводящему к таким эффектам, а другие препятствуют ему. По существу, он признает, что требования научности в этом и подобных случаях не выполняются.
Показательно, что метод познания в рамках паранауки характеризуется, и это определяющая его черта, отсутствием эмпирических и теоретических познавательных действий, сформировавшихся в ходе развития науки. Стремления постичь высшие тайны мироздания у представителей пара-науки основываются на безудержной фантазии, спекуляциях, которые в принципе невозможно проверить эмпирически, общепринятыми научными средствами. Вместе с тем, процедура построения псевдотеоретических конструкций не подчиняется требованиям согласованности, когерентности выдвигаемых идей, предположений (кстати, объявляемых незамедлительно и безоговорочно истинными) проверенному, подтвержденному эмпирическому или теоретическому знанию. Если знание достаточно логически разработано, как это имеет место, скажем, в схоластике или натурфилософии, оно оказывается совершенно не связанным с эмпирией, принципиально непроверяемо. Причем такого рода построения предполагают соединение самых разных, как правило, не связанных, несовместимых и даже противоречащих друг другу фактов, представлений, предположений. В основе данных процедур лежит открытый К.Леви-Стросом механизм так называемого «бриколажа», т.е. произвольного сочетания самых разнородных компонентов. Леви-Строс подчеркивал, что наука в целом - это конструирование согласно различению случайного и необходимого. Свойством мифологического мышления также является, в практическом плане, выработка структурированных ансамблей, но не непосредственным соотношением с другими ансамблями, а посредством использования отбросов и остатков событий. Можно сказать, в паранаучном знании имеет место «возрождение», «рецидив» определенных черт мифологического типа мышления.
Обращение к действительности, практике здесь носит характер прямого личностного воздействия на нее с целью получения граничащих с чудом результатов.
Если говорить о «познавательном цикле» в паранауке, то можно констатировать, что в нем хорошо «уживаются», объединяются псевдотеоретические рассуждения с такого же рода эмпирическими действиями. Образуется некоторый круг, в котором «теоретические» рассуждения обосновывают «эмпирические», практические действия и, наоборот, «эмпирия» подтверждает соответствующую «теорию». А все вместе (и «теория», и «эмпирия») находит свое последнее окончательное основание в личностном индивидуальном опыте, замешанном на имеющей давние исторические, мифологические, мистические, магические корни вере. И как обязательное условие: все противоречащее этому кругу, в особенности научный метод, критерии научности внутрь него не допускаются, так что способы вненаучного поведения тщательно оберегаются от критики, оставляются вне ее.
Что касается определения собственно научного метода, выявления его природы, то существует, по крайней мере, два пути образования понятия «метод». Первый путь заключается в эмпирическом исследовании возможно большего количества реально участвующих в научном познании методов с тем, чтобы с помощью индуктивного обобщения получить искомое понятие. Подобная установка весьма характерна для представителей тех или иных специальных дисциплин, которые попутно уделяют определенное внимание и проблемам метода своей науки, вопросам методологического обоснования своих исследований. Однако большое разнообразие научных методов, их значительные различия, а в ряде случаев противоположность, т.е. невозможность прямого использования методов одной науки в другой, далекой по предмету, говорит о том, что простое индуктивное восхождение от частного к общему, от факта существования разнообразных методов к общему понятию метода вряд ли осуществимо. В данном случае специфика базы индуктивного обобщения такова, что чисто эмпирический подход «не срабатывает».
Отсюда неудивительно, что среди ученых-конкретников зачастую можно встретить пессимистические высказывания о возможностях сформулировать его понятие, как это мы видели у М.Борна и Дж.Бернала. Иногда ученые говорят лишь о возможности изобразить научный метод в виде набора нескольких общих правил, носящих эвристический характер и выражающих лишь искусство, умение ученого вести исследование. Ограниченность эмпирического подхода, опирающегося только на практику, причем, как правило, практику личной научной деятельности, становится очевидной еще и потому, что такой подход не может в полной мере учесть нормативную сторону научного метода. Ибо, как показывает история науки, метод не просто «следует» за практикой исследований, а и выражает вырабатываемые в методологии и в философии теоретические представления об истинном, правильном научном исследовании.
Альтернативой крайнему эмпирическому подходу выступает подход, основывающийся только на теоретическом анализе проблемы. Здесь также есть опасность скатывания на крайнюю позицию. Речь идет о сугубо абстрактном конструировании понятия метода в отрыве от практики научного познания. Это достаточно часто наблюдается у тех мыслителей, которые являются приверженцами идеалистических концепций. Например, метод спекулятивной диалектики Гегеля характеризуется навязыванием природе такой логики, которая ей не присуща. Гегеля не устраивает метод объективного рассмотрения действительности, принятый естествознанием. Он скептически оценивает используемые в естествознании эксперимент и точное количественное описание явлений. Конкретно-научное исследование Гегель трактует в качестве абстрактного рассудка, довольствующегося односторонними определениями. Согласно Гегелю, подлинно научный метод - это метод спекулятивного постижения реальности в форме чистой мысли, не нуждающейся в отличие от абстрактного рассудка естествознания в каком-либо эмпирическом подтверждении. Отсюда проистекает весьма негативное отношение Гегеля к тогдашнему естествознанию, неверная оценка его достижений, фактические ошибки, отмечавшиеся учеными.
Односторонность крайнего эмпиризма заключается в том, что на основе частных фактов и наблюдений личного опыта исследовательской работы он редуцирует общее понятие метода к какому-либо одному частному, принятому тем или иным ученым или научной дисциплиной методу. Вместе с тем односторонен абстрактный, оторванный от научной практики, опирающийся только на общетеоретические и философские предпосылки способ конструирования научного метода. Предварительным условием формирования понятия научного метода является преодоление крайностей указанных подходов исходя из представлений о нормативном характере метода, а также из определенных критериев научности. При этом нельзя забывать о том, что нормы, правила метода, содержащийся в нем идеал истинного познания базируются как на практике научной деятельности, так и на базе теоретического, философского осмысления этой практики. Эти основы метода явно обнаруживают себя в истории науки.
Например, метод естествознания XVII столетия формируется в борьбе против схоластики, спекулятивно-теологического способа теоретизирования первоначально на философском, внешнем уровне методологической рефлексии. Главное требование нового метода гласит: тот, кто хочет найти истину, должен искать ее, задавая вопросы природе, а не сличая тексты священного писания. Истина, по мнению Галилея, записана в величайшей книге природы, но нельзя понять эту книгу, не научившись сперва понимать ее язык. Написана же книга природы математическим языком. Согласно новому методу, вопросы природе задаются с помощью экспериментов. Эксперименту, равно как и строгому математическому доказательству, Галилей придает решающее значение: «Одного единственного опыта или строгого доказательства в пользу противного взгляда было бы достаточно, чтобы сокрушить и эти и сотни тысяч других вероятных аргументов».
Необходимость рациональной организации процедуры исследования с применением математики и эксперимента Галилей выводит из философской концепции первичных и вторичных качеств, сформулированной еще в античной философии. Галилей требует различать объективные, или первичные, качества вещей и вторичные, или субъективные качества (вкусы, запахи, цвета и т.д.), принадлежащие субъекту. Самой природе принадлежат лишь величина, фигура, движение, количество; все остальные качества есть не что иное, как видимость. Поэтому процедура исследования должна быть строго рациональной, т.е. исключать обыденное наблюдение (на нем была основана физика Аристотеля), которое не различает видимости и закона; научное исследование должно использовать строгость математического рассуждения и эксперимент, поскольку именно эти приемы, по Галилею, обеспечивают познание первичных качеств вещей, т.е. познание сущности, закона. Исходя из такого понимания научного познания и используя общефилософские представления, Галилей формулирует некоторые правила и нормы метода, которые согласуются с общегносеологическими представлениями. Иными словами, он осуществляет перевод содержательных философских высказываний в высказывания нормативные, методологические, в высказывания, несущие информацию о том, как следует производить научное исследование. Надо отметить, что нормативные предложения метода, представляющие собой правила проведения эффективного, истинного исследования, опираются не только на общегносеологическое описание научной деятельности, на внешнюю методологическую рефлексию, но и на познавательный опыт, практику научного исследования, которая обобщается в форме самонаблюдения ученых своей собственной научной деятельности.
Соотношение этих составляющих методологического знания исторически меняется. Так, на первых этапах становления науки, научного метода доминировало методологическое знание философского характера, поскольку опыт нового типа, т.е. в собственном смысле научного исследования был еще небольшим. Философский, теоретический анализ опережает эмпирическое осмысление практики научной деятельности. Подтверждением этому может служить деятельность Ф. Бэкона и Р. Декарта, создававших свои учения о методе преимущественно на основе общетеоретических, философских представлений.
С развитием научного познания в системе метода возрастает удельный вес эмпирического знания, возникшего в результате рефлексии, самонаблюдения собственного научного творчества. Появляются работы Л. Больцмана, А. Пуанкаре, Д. Томсона и других крупных ученых, в которых они делают попытки обобщить свой познавательный опыт и высказать соображения о методе, путях научного исследования. Причем нередко результаты такого самонаблюдения, собственный познавательный опыт приходят в противоречие с результатами чисто теоретического философского конструирования метода. Естественно, это вызывает у ученых недоверие к такого рода представлениям о методе, которые критикуются ими как спекулятивные, оторванные от реальной практики научного познания. Весьма популярными делаются высказывания типа: «Научный метод - не столбовая дорога к открытиям».
Недостатки только эмпирического, равно как и только теоретического подходов, а также тенденции, обнаружившиеся в историческом развитии науки, показывают, что исследование природы метода, попытки его определения должны осуществляться с учетом результатов как философской методологической рефлексии, так и эмпирического обобщения практики научной познавательной деятельности. Философский уровень анализа позволяет, опираясь на общеметодологическую рефлексию, достигать осмысления особенностей научного познания, выдвинуть и обосновать общетеоретические положения, касающиеся существенных характеристик метода.
Такого рода обобщения, разумеется, должны определенным образом подтверждаться данными научной рефлексии, непосредственно включенной в работу научного метода и в силу этого имеющей возможность фиксировать те или иные его стороны, свойства, как раз проявляющиеся в процессе этой работы. Практика же научной работы демонстрирует, что в зависимости от конкретной познавательной ситуации на первый план выдвигается, более рельефно обнаруживается то один, то другой элемент его содержания, то или иное свойство, сторона. Этим обстоятельством можно объяснить существование в методологии различных определений метода, что, в свою очередь, побуждает специалистов классифицировать сами определения, например, на иллюстративно-образные, гносеологические и операциональные (инструментальные). С другой стороны, сложное строение метода обусловливает необходимость и возможность специального рассмотрения его основных сторон.
7. МЕТОД КАК СИСТЕМА ЗНАНИЙ И СИСТЕМА ДЕЙСТВИЙ
Как отмечалось, в структуре метода содержится совокупность знания, в которой главное место занимает отражение свойств, закономерностей процесса научной деятельности, изучаемое философией, а также эмпирическое знание, непосредственно вытекающее из практики научного исследования и представляющее собой главным образом результат самонаблюдения учеными своего собственного опыта познания. Практика научного исследования, многолетний опыт мыслительной деятельности человека аккумулируются и в разнообразных эвристических приемах, правилах.
Иначе говоря, совокупность методологического знания, содержащегося в методе, включает в себя также нормы, правила, предписания чисто функционального служебного характера, которые являются не чем иным, как эмпирическим обобщением практики научной деятельности. Например, современные рабочие методы палеонтологии включают операции сбора, подготовки, препарирования, фотографирования фоссилий, их классификацию. Здесь же применяется реконструкция как фоссилий, так и среды их обитания. Палеонтологи используют разнообразные инструменты, приборы (различные долота, зубила, стамески, фотокамеры, микроскопы и т.п.), различные методики (вымачивания, цементации, мацерации, шлифы и т.п.). Они «впитывают» в себя многовековой опыт палеонтологических исследований начиная от Аристотеля, затем Агриколы, Геснера и др. и кончая палеонтологическими изысканиями нашего времени. Именно практика работы с окаменелостями научила палеонтологов формулировать нормы и отрабатывать операции, обеспечивающие возможность отличать фоссилий от псевдофоссилий и подделок, заставила вырабатывать правила, приемы, снижающие трудоемкость, повышающие надежность данных, точность датировки.
Подобного рода исследовательские приемы, правила, которые фиксируются и осмысляются в процессе самонаблюдения своей познавательной деятельности, обычно передаются от учителей к ученикам, усваивающим их в ходе профессиональной подготовки. Тем самым метод выступает необходимым условием сохранения и поддержания научных традиций, обеспечивает преемственность развития научного познания. Кроме того, сохранение и передача правил и приемов исследования от одного поколения ученых к другому раскрывает педагогическую функцию метода. Ведь главная задача процесса обучения состоит не столько в усвоении знаний, сколько в научении исследованию. Исследователем может стать лишь тот, кто, прежде всего, усваивает метод исследования, т.е. правильный путь, способ решения научных проблем. Можно сказать, что с успехом применяемый правильный метод в определенном смысле научает исследованию лучше, нежели содержательное знание, даже если это знание теоретическое. Разумеется, правильность метода должна опираться на истинность содержательного знания, так как сама по себе правильность, понимаемая как чисто формальное соответствие исследовательских процедур установленным методом правилам, нормам, не может гарантировать эффективности научного познания.
Правила исследования, возникшие на основе эмпирического обобщения практики научного познания, несмотря на известную приблизительность, неопределенность аккумулируют многолетний опыт умственной деятельности человечества и поэтому выполняют важную эвристическую роль, обеспечивают решение познавательных задач. Их применение предполагает определенный навык, умение, требует от исследователя творчества. Причем они не образуют какой-либо организованной системы, как, например, научная теория. Это эмпирическое методологическое знание, составляя некоторую достаточно расплывчатую совокупность правил, предписаний, непосредственно входит в ткань предметного уровня научного исследования, участвуя в его регуляции.
Возьмем для примера такой метод научного исследования, как анкетирование. Он включает большое количество методологических предписаний, направленных на повышение надежности получаемой информации, ее точности, обоснованности выводов, увеличение эффективности исследования. Определенная ее часть содержит правила работы с теорией объекта, например, предписания относительно редукции теоретических положений к эмпирически наблюдаемым индикаторам, выделения и конструирования индикаторов и т.д. Другая часть нормирует процедуры формулировки вопросов анкеты, где также имеет место градация правил в зависимости от характера вопросов (открытые, закрытые, программные и т.д.). Есть также специальные правила, регулирующие социально-психологическую специфику общения социолога с респондентами, сюда же включаются правила, определяющие практическое проведение самих исследовательских процедур, их порядок, последовательность, организацию и т.д. При этом вся эта достаточно большая совокупность предписании и правил не субординирована, между ее составляющими отсутствуют какие-либо логические связи. Если и возникает некоторая их организованность, системность, то она определяется практикой осуществления, реализации метода анкетирования, зависит от задач, этапов, потребностей самого процесса исследования.
Важным фактором, систематизирующим, упорядочивающим методологические нормы, правила эмпирического характера, является методологическое знание более высокого уровня обобщения. Речь идет о знании, формирующемся на внешнем уровне научной рефлексии, прежде всего в рамках философии, методологии науки. Именно на этом уровне вырабатываются представления об определенном образце, идеале научного исследования. Эти представления невозможно извлечь только из эмпирического наблюдения существующих в науке методов. Представления об идеале научного исследования по своей сути теоретичны, вырабатываются на основе определенных философских предпосылок, концепций, явно или неявно присутствующих в понятии научного метода. Например, метод научного исследования И. Ньютона опирался на философские идеи, характерные для науки XVII столетия. Ньютон, прежде всего, разделял общее для всех ученых того времени убеждение в необходимости разграничивать предмет веры и предмет науки. С точки зрения Ньютона научное изучение природы служит косвенным доказательством существования бога, поскольку выделение и изучение наукой механических свойств природных процессов, механических причин движения материи не объясняет удивительной соразмерности движения небесных тел, целесообразного строения живых организмов, не объясняет физической сущности всемирного тяготения. Поэтому, по мнению Ньютона, «есть бестелесное существо, живое, разумное, всемогущее, которое в бесконечном пространстве, как бы в своем чувствилище, видит все эти вещи вблизи, прозревая их насквозь, и понимает их вполне благодаря их непосредственной близости к нему».
Однако божественным бытием должна заниматься теология. Сам Ньютон был видным теологом и, по свидетельству его биографов, свои теологические занятия ставил выше научных. Наука же призвана изучать то, что позволяют ее методы, а именно природные явления. Наука должна довольствоваться малым, т.е. изучать то, что поддается экспериментальному анализу и строгому математическому описанию количественных отношений действительности.
Ньютон стоит на позициях математической экспериментальной натуральной философии, метод которой складывается из следующих познавательных шагов. Сначала с помощью экспериментов анализируются зафиксированные в чувственном опыте, непосредственном наблюдении явления. Затем на основании этого анализа из явлений выводятся общие принципы. Наконец, из полученных принципов математически строго выводятся все остальные явления. В итоге получается математически обоснованная, доказанная система знания, в которой из нескольких общих принципов, законов дедуктивно выводятся, объясняются частные явления действительности.
Тем самым в научном исследовании реализуется гипотетико-дедуктивный метод, классически развитую форму, которого создал впервые как раз И. Ньютон. В предисловии к первому изданию «Математических начал натуральной философии» он писал, что вся трудность физики состоит в том, чтобы по явлениям движения распознавать силы природы, а затем по этим силам объяснить все остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. В третьей же книге давался пример вышеупомянутого приложения для объяснения системы мира, ибо здесь из небесных явлений при помощи предложений, доказанных в предыдущих книгах, математически выводятся силы тяготения тел к Солнцу и отдельным планетам. Затем по этим силам также при помощи математических предложений выводятся движения планет, комет, Луны и моря. Ньютон высказывался еще в том духе, что было бы желательно вывести из начал механики и остальные явления природы, ибо многое заставляет предполагать, чго все эти явления обусловливаются некоторыми силами, с которыми частицы тел вследствие причин покуда неизвестных или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга.
Руководствуясь своим методом, Ньютон вычислил массу Солнца, установил величину расширения Земли по экватору из-за центробежной силы, обусловливаемой ее вращением вокруг собственной оси. Он показал, что морские приливы связаны с гравитационным притяжением Земли Солнцем и Луной; объяснил наблюдаемые нерегулярности в движениях Луны и планет действием сил тяготения Солнца, Земли, других планет; заложил основы теории возмущения планетных орбит и т.д.
Идеал, содержащийся в научном методе, как и любой другой идеал, должен быть определенным образом связан с действительностью (в нашем случае - с практикой научного познания); но, с другой стороны, идеал, чтобы выполнить свое предназначение, должен концентрировать в себе только лучшие стороны этой действительности, причем переработанные, усиленные. Иначе он не сможет формулировать, указывать перспективу, программу научного исследования. Добавим, что формирование понятия научного метода шло в конкретных условиях исторического развития науки. Например, в науке XVII века кроме ньютонианской использовались еще картезианская и атомистическая традиции. На такой почве сталкивалось множество идеалов и норм науки, бытующих на теоретическом уровне научной рефлексии. Шла идейная борьба с участием разных философских систем в формировании научных идеалов (весьма заметную роль в этом процессе играют, например, традиции рационализма и сенсуализма, эмпиризма). К тому же возникло сложное строение рефлексивного уровня науки, где в процессе формирования идеалов и норм познания принимают участие не только философия, гносеология, но и более специальные уровни обобщения, образующиеся в рамках обшей методологии науки, а также и в методологии отдельных наук.
Правомерно утверждать, что всякий эффективный метод опирается на теорию объекта. Например, социологическое исследование ценностных ориентаций людей в сфере культуры требует разработки анкеты с учетом общетеоретических представлений о сущности духовной культуры общества и личности, ее структуре и основных свойствах. Эти общетеоретические соображения переводятся в совокупность эмпирических индикаторов, в качестве которых выделяются предпочтительные типы поведения респондентов в их свободное время (частота посещения тех или иных учреждений культуры, участие или неучастие в художественной самодеятельности и др.) Иными словами, сам метод анкетирования возможен только потому, что в процессе его осуществления используются эмпирические содержательные индикаторы, выводимые из соответствующих теоретических положений, т.е. из предметного теоретического знания.
Еще более тесная связь содержательного и методологического знания прослеживается в случае использования теоретических методов познания. Гак, решая некоторые задачи гидростатики, Архимед исходил из теоретических предположений о природе жидкости, согласно которым она состоит из однородных частиц, тесно прилегающих друг к другу и испытывающих давление со стороны соседних частиц. Если бы жидкость была предоставлена самой себе, то она имела бы форму шара, центр которого совпадал бы с центром Земли. Сформулировав данные теоретические допущения, Архимед начинает свой мысленный эксперимент. Ученый проводит мысленные операции с этой самой жидкостью в форме шара: мысленно делит шар на фигуры в виде смежных пирамид с вершинами в центре Земли, проводит около центра еще одну шаровую поверхность, а затем последовательно рассматривает ситуации с телами, равнотяжелыми с жидкостью, с телами, более легкими, чем жидкость, и телами, более тяжелыми, чем жидкость. В итоге он получает теоретически доказанные следствия о выталкивающей силе, действующей на погруженное в жидкость тело, иными словами, получает результат, позднее названный по его имени законом Архимеда.
Очевидно, что сам мысленный эксперимент, его проведение было бы попросту невозможно без предварительного формирования начальных теоретических допущений. И сам эксперимент осуществляется как некоторая последовательность мысленных операций как раз с исходным теоретическим материалом; ведь все мысленные преобразования, проведенные по ходу эксперимента Архимедом, касаются того шара воды, который был им сконструирован теоретически.
В целом же выдвижение и логическая разработка предположений, выведение конечных следствий, последующее сопоставление данных следствий с эмпирической ситуацией - все эти исследовательские процедуры объединяются Архимедом в гипотетико-дедуктивном методе, получившем законченный вид в XVII веке. Позже А. Эйнштейн предложил знаменитый мысленный эксперимент для объяснения понятия одновременности в специальной теории относительности. В нем были использованы следующие теоретические постулаты: 1) не существует способа, чтобы установить, находится ли тело в состоянии покоя или равномерного движения или, другими словами, во всех инерциальных системах отсчета все явления протекают одинаково, законы природы инвариантны относительно перехода от одной инерциальной системы к другой; 2) независимо от движения своего источника свет всегда движется через пустое пространство с одной и той же постоянной скоростью или, другими словами, скорость света одна и та же во всех инерциальных системах отсчета.
Суть эксперимента Эйнштейна заключается в следующем. Пусть по железнодорожному полотну от А к Б движется с большой скоростью длинный поезд. В точках А и Б, расположенных соответственно против хвоста и начала поезда, одновременно вспыхивают молнии - так воспримет это событие наблюдатель, находящийся на полотне дороги как раз посередине состава, поскольку свет распространяется с одинаковой скоростью от обеих молний. Но эти же вспышки иначе воспримет наблюдатель, находящийся в середине поезда как раз против наблюдателя, что на полотне дороги. Для него вспышки не будут одновременными, так как вспышке, возникшей в конце поезда, придется дополнительно преодолевать путь, который пройдет удаляющийся от нее поезд, соответственно быстрее появится вспышка, к которой направлено движение поезда. Отличие результатов наблюдений, согласно эксперименту, позволяют Эйнштейну сделать вывод, что одновременность следует трактовать как понятие относительное для разных инерциальных систем. Можно таким образом констатировать, что практика работы эмпирических, равно как и теоретических, методов в научном познании показывает зависимость их функционирования от предметного теоретического знания, без использования которого работа метода была бы невозможна. Причем используется не только предметное знание, непосредственно включающееся в метод, но и знание, которое, как это видно на примере мысленного эксперимента Эйнштейна, как бы «прилагается» к нему, не входя в него непосредственно.
Практика научного познания показывает, что метод невозможно отделить от познавательных действий, осуществляемых учеными в ходе исследования. Поэтому метод кроме знаниевой, идеальной стороны, представляет и деятельностно-практическую сторону научного познания. Это означает, что метод - не только идеальная предпосылка познавательной деятельности, но и непосредственное участие в этой деятельности, ее регуляция. Отсюда неверно понимать метод как только систему знания. Если ограничиваться этим подходом, то можно получить довольно странные выводы. Например, эксперимент с этой точки зрения есть не практическая работа ученых со штаммами бактерий, не совокупность операций по изучению поведения элементарных частиц при столкновении со встречными пучками частиц, не создание условий для исследования моделей больших молекул какого-либо полимера, а только знание о том, как работать с бактериями, как сталкивать потоки элементарных частиц в ускорителях, как создавать модели, т.е. не собственно сам эксперимент, а только знаниевое «предвосхищение» эксперимента.
Само знание - и предметное, и даже методологическое, т.е. совокупность норм и предписаний, не может регулировать исследовательскую деятельность, поскольку регуляция предполагает последовательность определенных практических управляющих воздействий на систему деятельности. Поэтому для того, чтобы методологическое знание превратилось в метод, реально регулирующий познавательную деятельность, необходим перевод описаний познавательной деятельности в предписания, т.е. необходима выработка правил деятельности, а также необходимо, чтобы метод непосредственно «внедрился» в процесс деятельности, реализовался через структуру познавательного процесса, стал способом его осуществления. Иными словами, переход от знания к деятельности, к непосредственной ее реализации делает метод действительно эффективным орудием регуляции познания.
Такая регуляция, с одной стороны, основывается на системе методологического знания, а с другой стороны, практически реализуется в процессе познания как определенная последовательность, программа реально производимых познавательных процедур и действий. Это означает, что метод не может быть оторван от деятельности, поскольку создается для ее регуляции; он есть способ, процесс осуществления этой деятельности в определенном порядке, предусмотренном методологическим знанием. На это обстоятельство указывают многие исследователи. Например, Г.И. Рузавин отмечал, что в самом общем смысле метод представляет некоторую систематическую процедуру. Эта процедура может состоять из последовательности повторяющихся операций, применение которых в каждом конкретном случае либо неизменно приводит к достижению поставленной цели, либо такая цель достигается в подавляющем большинстве случаев. Наша позиция совпадает с данной точкой зрения.
Сведение метода только к совокупности знания неточно; метод есть система знания плюс познавательные операции, действия. Операциональная составляющая метода представляет собой важный компонент его структуры. Совокупность операций метода столь же разнообразна, как и совокупность правил, норм, предписаний, образующих систему методологического знания. Сюда входят как мыслительные операции, представляющие собой работу с идеями, понятиями и другими идеальными конструктами, так и разного рода знаковые (работа с чертежами, схемами, графиками, формулами и т.д.), а также материальные, предметные действия, обычно осуществляемые в экспериментальных исследованиях. Операции метода можно подразделить также и в соответствии со степенью их общности, универсальности и, следовательно, сферой применимости. Так, весьма широкой областью применения обладают мыслительные операции типа индукции, дедукции, сравнения и т.д.
Подобного рода операции применяются не только в научной деятельности. Любое действие, любой мыслительный акт, в том числе и научный, не может обойтись без индукции, дедукции, сравнения, анализа, синтеза и т.д. В них находит свое выражение общность научной и других видов познавательной деятельности человека, специфические особенности человека как мыслящего существа. Поэтому такие операции, являясь по своей природе логической формой осуществления любой мыслительной деятельности, образуют общий универсальный компонент в системе операций метода. Эти операции достаточно общи, применяются на любом этапе научного познания, будь то эксперимент или теоретическое исследование; их всеобщая применимость свидетельствует об их логической природе и о независимости, самостоятельности по отношению к любому конкретному объекту. Они образуют всеобщую логическую форму и условие осуществления мыслительной деятельности вообще и научного познания в частности.
Универсальность такого рода операций, их независимость от конкретного содержания обусловливаются тем обстоятельством, что свое непосредственное основание они находят в практике умственной и трудовой деятельности. Практическая деятельность, последовательное осуществление тех или иных мыслительных или предметных действий на протяжении многих лет человеческой истории «откладывается» и закрепляется в виде операций, имеющих универсальное значение. На другом полюсе метода находятся конкретизирующие операции, дополняющие универсальные и направляющие метод на изучение конкретных объектов.
Методические операции своеобразно учитывают специфику исследуемых объектов, и поэтому они имеют двойственное основание: особенности объектов и особенности познавательной практики, направленной на данные объекты. Метод эффективен, когда он не противоречит природе изучаемых объектов. Сама же эта эффективность достигается в процессе многолетней практики изучения тех или иных объектов, многолетнего совершенствования познавательных действий, приспособления именно к этим объектам с целью повышения эффективности научного познания.
Например, специалисты-антропологи, рассматривая проблему методов, отмечают основные вехи в процессе развития методов исторической антропологии. Показывается, что их отработка, скажем, выработка наиболее целесообразной, одновременно достаточно полной, в то же время нетрудоемкой совокупности измерительных действий, а также изготовление наиболее простого в обращении, портативного, удобного в полевых условиях инструментария для проведения измерений основывались на многолетней практике антропологических исследований благодаря усилиям ученых разных стран. В частности, специфика объектов антропологии приводит к значительному отличию процедур антропологического измерения по сравнению, скажем, с измерением в физике. Антропологические измерения не требуют большой точности; особенности антропологического познания вызывает необходимость в применении специальных измерительных средств: набора разнообразных циркулей, гониометров, мягких градуированных лент и некоторых других приборов (В.П. Алексеев и др.).
То обстоятельство, что метод кроме знания есть еще и организация и осуществление действий субъекта по использованию познавательных приемов, операций, легко обнаруживается в тех науках, где большой удельный вес занимают описательно-эмпирические, экспериментальные процедуры. Скажем, владение методом палеонтологического исследования не сводится к знанию о способах сбора, препарирования, классифицирования и т.д. окаменелостей; здесь важно также иметь практический навык выполнения этих операций вплоть до отработки правильного угла наклона долота при обработке содержащей окаменелости штуфа породы, т.е. соответствующим образом практически их осуществлять.
Аналогичным образом вырабатываются и применяются в практике познания навыки использования исследовательских действий в прикладных методах биологии, географии, социологии, экономики и т.д. Существуют сходные, с учетом специфики, механизмы интериоризации, осмысления и применения навыков, приемов, познавательных действий и в теоретических методах. И теоретические методы содержат не только знание, но и умение, и действие, практическое использование приемов теоретического анализа или синтеза, обобщения или применения математики и т.д.
Практика научного исследования, таким образом, показывает, что метод представляет собой не только систему знания, но и систему познавательных действий. Если бы метод был только знанием, то его существование, по сути, сводилось бы к форме общенаучного, интерсубъективного. Такое общезначимое относительно независимое от отдельных ученых бытие метода действительно имеет место. Однако заключенные в методе правила, нормы исследования применяются ученым в работе, усваиваются им, интериоризуются, из формы общенаучного превращаются в индивидуальное, личностное знание и практическое умение, навык, которые реализуются непосредственно в исследовании в качестве познавательных действий, операций. Только будучи индивидуально усвоенным, субъективно переосмысленным, метод включается в непосредственный процесс исследования, становится его стержнем, формой его осуществления. В самом процессе исследования метод существует в форме той или иной последовательности познавательных действий, шагов, основанных на предметном п методологическом знании, включающем в себя не только чисто когнитивные элементы, но и умение, навык исполнения логических, мыслительных или практических, экспериментальных приемов, операций исследования.
Необходимо выделить еще один важный компонент научного метода, выступающий своего рода связующим звеном между знаниевой и операциональной составляющими. Речь идет об умении как специфическом «сплаве» знания и действия, поскольку именно в умении находит свое выражение знание предмета и знание методологических правил и предписаний, а также практическая культура осуществления познавательных процедур, т.е. совершенно необходимый для успешного функционирования познавательной деятельности их синтез. Умение неотделимо от навыков, которые психологи трактуют как действия, сформированные через их повторение, через закрепление путем упражнения в процессе освоения деятельности. Единство знания, навыков, т.е. наиболее освоенных, доведенных почти до автоматизма способов деятельности и образует умение как необходимый элемент метода. Кроме того, умение обладает личностной окраской, выступает всегда как умение той или иной личности, ученого, оно всегда субъективно, индивидуально. Хотя, разумеется, существуют навыки, общие для субъектов научной деятельности, но они применяются индивидуально в зависимости от опыта, предмета, целей исследования, личных пристрастий и желаний.
Именно через умение происходит постоянный переход знаний в познавательные действия и, наоборот, действий в знания, нормы, правила, переход, существенно необходимый для нормального функционирования научного метода и выражающий динамическое единство когнитивной, знаниевой и деятельностно-практической его сторон. Именно через умение функционирует метод, реализуется его деятельностная природа.
Практическая природа научного познания убедительно раскрывается М. Полани. Он уделяет большое внимание исследованию роли навыков выполнения живых образцов научного познания, умения, которые приобретаются лишь практическим участием в работе. М. Полани рассматривает практику осуществления деятельности, механизмы формирования умения начиная с образования навыков поведения у животных, приобретения умения человеком в разных видах практической деятельности (езда на велосипеде, работа с молотком и т.д.) и кончая практикой использования языка и практикой научного познания. В этом смысле показателен пример с обучением студента-медика пониманию рентгеноскопического изображения грудной клетки. Никакая, даже самая подробная инструкция не научит такому пониманию. Только непосредственное личное участие в таких процедурах, личная практическая учеба у опытного врача-рентгенолога приводит к соединению вербального знания и практического понимания, умения, к превращению студента в понимающего врача.
Существование научного метода в форме живых образцов деятельности зачастую может быть более важным, чем словесные предписания. Значение этой практической культуры научного познания, лично усвоенных и отработанных приемов исследования трудно переоценить. Именно в этой культуре практической научной работы, являющейся важным компонентом метода, раскрывается смысл понятия «научная школа». Научные школы различаются во всем массиве науки не только по результатам, зафиксированным в текстах научных трудов и отчетов, но, главным образом, по тем навыкам, по тому умению решать научные проблемы и приводить в действие живые образцы деятельности, которые передаются от учителей к ученикам и последователям и являются важнейшим условием прогресса в научном познании. Полани пишет, что искусство, процедуры которого остаются скрытыми, нельзя передавать с помощью предписаний, ибо таковых не существует. Оно может передаваться только посредством личного примера, от учителя к ученику.
Наблюдая учителя и стремясь превзойти его, ученик бессознательно осваивает нормы искусства, включая и те, которые неизвестны самому учителю. Иными словами, научная школа транслирует не столько знания, сколько метод исследования, практическую культуру его осуществления. При этом деятельно-практическая и знаниевая стороны метода могут быть разведены только в абстракции. Единство этих сторон можно представить по аналогии с противоположностью и взаимной обусловленностью языка и мышления.
Подобно тому, как язык вне мышления превращается в простую совокупность ничего не значащих, не обладающих реальным существованием, безжизненных материальных объектов, т.е. подобно тому, как язык нуждается в живой деятельности мышления и, наоборот, мышление в языке, так и существование метода возможно только как единство, взаимодействие знания и деятельности. Жизнь, существование метода, его функционирование в процессе научного познания становится возможным только как результат постоянного превращения знания в познавательные действия и соответственно действий в знание.
Выявленные и рассмотренные компоненты метода - знание, познавательные действия, операции и умение представлены также в надындивидуальной общенаучной сфере. Ведь и методологическое знание, и операции, да и навыки как необходимая предпосылка умения общезначимы для всех ученых, поскольку могут быть использованы любым исследователем. Метод, в той части, в которой отражает универсальные характеристики практики научного исследования, является общенаучным средством решения познавательных задач, общезначимым, допускающим использование в разных исследованиях разными учеными.
Однако метод, находясь на надындивидуальном уровне научного познания, остается методом лишь в потенции, в возможности. Превращение возможности в действительность, перевод метода из потенциального существования в актуальное происходит как результат соединения общего и единичного, общенаучного и индивидуального. Иначе говоря, метод становится действенным, когда он соединяется с субъективным методологическим «искусством», умением решать познавательные задачи.
В методе осуществляется необходимое для прогресса познания объединение, взаимодействие индивидуального и надындивидуального уровней познавательной деятельности. Это происходит в ходе практического применения исследователем своего личного умения, т.е. в процессе использования методологического знания и разработанных на его основе операций, так что реальное функционирование научного метода обусловливается единством общих закономерностей научного познания и конкретных, единичных условий его протекания. Непосредственная практическая работа метода, его функционирование в научном исследовании основывается, таким образом, на определенном уровне индивидуальной профессиональной подготовки, умения, которое не сводится к чисто когнитивным, логическим навыкам и действиям.
В умении как субъективном искусстве исследователя переплетаются когнитивные, рациональные и эмоциональные, волевые, ценностные и другие моменты. В то же время в личной практике применения научного метода происходит взаимодействие индивидуального и надындивидуального, общенаучного; эта сторона метода выступает также своего рода каналом связи между обществом и научным исследованием, служа проводником влияния социокультурных условий на работу науки, на функционирование научного метода.
Конечно, неправомерно сводить метод целиком к субъективному искусству, индивидуальному умению исследователя. Такое понимание достаточно распространено в философии науки, например, в позитивистской традиции. С этой точки зрения научное познание, научная деятельность не поддается рациональному осмыслению, так как в ней участвуют чисто индивидуальные психологические механизмы типа воображения, интуиции, которые являются предметом психологии, а не логики. Современная философия науки трактует метод как единство, взаимодействие общенаучного и индивидуального, когнитивного и ценностного, субъективного, реализуемого в практике научного исследования.
Научный метод используется в качестве средства получения знания. Но наряду с методом в науке средствами познания являются приборы, теории, язык и т.д. Отличие метода от других познавательных средств заключается в том, что метод предназначен для регуляции научной деятельности, упорядочения всей ее структуры, в то время как ни одно другое средство научного познания не в состоянии выполнить эту функцию. Иными словами, существует фундаментальная связь метода и структуры научной деятельности. Метод выполняет функцию регуляции, упорядочения всей его структуры. Эту функцию он осуществляет, основываясь на знании свойств и закономерностей процесса научного познания.
Подобное знание содержит, как уже говорилось, общетеоретические, философские представления о природе и особенностях научного познания, а также эмпирическое знание процесса научного исследования, полученное посредством самонаблюдения ученых, обобщения практики собственной научной работы. При этом надо учитывать, что структура научной деятельности включает индивидуальный и надындивидуальный уровни, соответственно которым модифицируется сам метод. Так, методы индивидуального уровня научного познания весьма многообразны, поскольку многообразна и вариабельна индивидуальная работа отдельно взятых ученых; на этом уровне нет единообразия в процедурах, методах исследования. В отличие от индивидуального надындивидуальный уровень научной деятельности подчиняется одному, типическому для науки способу получения нового знания; данный способ, метод отличает науку от других видов познавательной деятельности, выражает ее качественную специфику, определенность; он сохраняет свое постоянство, стабильность на протяжении длительной исторической эпохи или эпох и меняется только вместе' с изменением общих социальных и гносеологических условий научного познания, вместе с коренными научными революциями.
Исходя из этого, надо различать понятия «научный метод», «метод! индивидуального уровня научной деятельности» и «метод науки». Понятие «научный метод» обычно понимают как способ, путь познания, систему правил, норм, применяемых в том или ином исследовании, в той или иной науке для решения научных проблем, задач. В этом смысле понятие «научный метод» - собирательное, поскольку под него подпадает любой из всего многообразия методов, применяемых в науке, начиная от таких! методов, как эксперимент, моделирование и кончая анкетированием в социологии или методами микроскопического наблюдения в биологии.
Понятие «метод науки» характеризует собой науку как специфическую систему познания, выражая общий, надындивидуальный уровень научной деятельности. В сущности, метод науки есть не что иное, как типичный для науки в отличие от других видов познания (художественного, обыденного и т.д.) способ получения нового знания, т.е. метод науки включен в организацию познавательной деятельности всей системы науки. Это находит свое выражение в том, что устанавливается определенный набор познавательных шагов, упорядочивается последовательность их применения. Так, главное требование метода современной науки - это установление сбалансированного единства теоретических и эмпирических исследовательских процедур таким образом, что наука в целом как особая познавательная система отражает действительность, осуществляя построение совокупностей теоретического и эмпирического знания, которые взаимодействуют, обеспечивая тем самым прогресс познания.
Подобное единство сложилось уже в момент зарождения классической науки XVII века в деятельности ее великих родоначальников Галилея, Герике, Гюйгенса, Ньютона и других. На наш взгляд, метод науки - это особая организация познавательного цикла системы науки, всей структуры научной познавательной деятельности, предполагающая выделение и использование определенных познавательных стадий, шагов, а также определенную последовательность их применения. Важнейшие из них - формулировка проблемы, построение гипотезы, а затем теории, эмпирическая проверка созданной теории с помощью эксперимента, наблюдения и других процедур получения эмпирического знания и, наконец, цикл завершается формулировкой новой проблемы. Схематически метод науки или, что то же самое, ее общий познавательный цикл выглядит так: проблема 1 - процедуры построения теоретического знания - процедуры построения эмпирического знания - процедуры установления соответствия между теоретическим и эмпирическим знанием - проблема 2-й далее цикл повторяется.
Точность и строгость процедурам познавательного цикла придает использование математики. Разумеется, данная схема, как и любая другая, в общей и соответственно упрощенной форме представляет целостный п многообразный поток научного познания; ее предназначение - обозначить лишь его основные этапы. К тому же надо учитывать, что циклическое функционирование познавательной системы науки предполагает изменение не только проблем, как это обозначено на схеме, но и содержания, а также форм организации как теоретического, так и эмпирического исследования.
В отличие от метода науки метод индивидуального уровня научного познания организует уже не всю систему научной деятельности, а формирует только познавательный цикл данного конкретного исследования, данной исследовательской программы. Если познавательный цикл науки остается в целом достаточно стабильным на протяжении большого промежутка времени, то познавательный цикл индивидуального уровня научного познания весьма изменчив, поскольку в каждом конкретном случае в зависимости от задач исследования он может включать чисто теоретические процедуры или, наоборот, ограничиваться только экспериментальными познавательными действиями и т.д. Этим объясняется большое разнообразие научных методов, применяемых в различных исследовательских программах.
Такое разнообразие, изменчивость метода индивидуального уровня научной деятельности нельзя трактовать в субъективном духе; эти особенности имеют объективные основания, вытекающие как раз из природы исследуемых объектов, а также из закономерностей научного познания. При всем многообразии методов индивидуальной научной работы главное в каждом из них - это то, что любой из них всегда выражает общую структуру данного исследования, т.е. организует его познавательный цикл. Например, использование интервью в качестве метода конкретно-социологического исследования предполагает прохождение ряда этапов. К их числу относятся: 1) подготовка к проведению интервью, включающая в себя подготовку вопросника, изучение материала, связанного с темой будущей беседы, ознакомление с особенностями респондентов; 2) проведение интервью, состоящее из установления последовательности вопросов, их формулировки, задания нужного темпа беседы, ее продолжительности; 3) регистрация ответов по определенным правилам и т.д. Причем важнейшим компонентом данного цикла является стадия осмысления или формулировки проблемы, задачи, которая предполагает не только личные усилия исследователя, стремящегося решить задачу, но и обязательное обращение к работам предшественников или современников, т.е. диалог, фазу общения или субъект-субъектное взаимодействие. Иными словами, индивидуальное научное исследование нельзя сводить только к субъект-объектному отношению, поскольку общественная природа научной деятельности непосредственно проявляется в субъект-субъектных отношениях, диалоге в разных его формах, во взаимодействии ученых. Среди выделенных понятий («научный метод», «метод науки», «метод индивидуального уровня научного познания») самым широким по объему является первое; два последующих представляют собой видовое развитие исходного, первого понятия, поскольку они конкретизируют родовое понятие и позволяют наглядно выразить связь метода со структурой познавательной деятельности, с ее разными уровнями (индивидуальным и надындивидуальным). При этом надо подчеркнуть, что научный метод, его модификации, вызываемые переходом от одного уровня к другому в структуре научной деятельности, реально функционируют в науке в качестве соответствующего познавательного цикла, организация которого задается установлением необходимой последовательности определенного набора познавательных действий, исследовательских шагов.
Главный вывод состоит в том, что научный метод во всех своих модификациях, в сущности, есть определенная организация познавательного цикла на разных уровнях научного познания. Метод, таким образом, можно определить как систему, упорядоченную последовательность познавательных шагов, исследовательских операций, основанных на предметном н методологическом знании. Метод структурирует научную познавательную деятельность. Способ его существования - это реальное функционирование познавательного цикла на разных уровнях научной деятельности.
Важно сравнение метода с алгоритмом как одним из основных понятий логики, математики и кибернетики. Под алгоритмом понимают четко обозначенную последовательность достаточно строго регламентированных операций, которая установленным образом связывает начальную ситуацию и получаемый результат. Математическое понимание данного понятия представляет алгоритм как точное предписание, задающее вычислительный процесс, ведущий от начальных данных, которые могут варьировать, к искомому результату. В кибернетике алгоритм понимают как точное предписание о выполнении в определенном порядке системы операций для решения любой задачи из некоторого выделенного класса задач. Иными словами, алгоритм понимается как жестко детерминированный математический и логический метод формального или, как иногда его характеризуют, механического решения задач какого-либо класса. И метод, и алгоритм программируют познавательную деятельность, указывая как последовательность, так и характер, а также количество необходимых познавательных шагов. В то же время в алгоритме, во всяком случае, в его классической интерпретации, например, в интерпретации А.А. Маркова, устанавливается весьма жесткая связь между начальной ситуацией и получаемым результатом. Поэтому алгоритм выражает стремление к высшей степени формализации процесса деятельности, к однозначности, когда каждая стадия процесса точно, строго, однозначно детерминирует последующую стадию.
Однако существуют определенные границы формализации, алгоритмизации научного исследования, поскольку большая часть наук и областей исследования не достигла уровня, позволяющего строить формальные системы и алгоритмы. К тому же после доказательства знаменитых теорем Геделя о неполноте формальных систем и о невозможности доказать непротиворечивость формальной системы средствами самой формальной системы стало ясно, что полная формализация человеческого познания невозможна, что сама формализация опирается на содержательный, семантический подход. Научное познание представляет собой принципиально неформализуемую деятельность, характеризующуюся достаточно большой степенью неопределенности как самого процесса, так и ее элементов. Поэтому алгоритмы, алгоритмические методы, характеризующиеся как раз жесткой однозначностью, строго формализованным путем решения задач, наибольшее распространение получают в сравнительно небольшом количестве наук - математике, логике, термодинамике, класса ческой механике и некоторых других.
Природа научного познания как принципиально неформализуемой познавательной деятельности, таким образом, находит свое выражение н содержательных методах, которые подобны не жестким, а в большей степени «расплывчатым», «размытым» алгоритмам. Другими словами, метод нельзя свести только к логическим операциям или операциям алгоритма, функционирование метода есть конструктивный, порождающий процесс. Если формально-логические и алгоритмические процессы остаются в рамках готового, уже полученного результата, то процесс, основанный на содержательном методе, предполагает практическое движение к новому, порождение, конструирование нового. А такое конструирование нового не может быть бессодержательным, только формальным, алгоритмическим. То есть метод в широком содержательном смысле выступает эвристически орудием, средством получения действительно нового, не предопределенного заранее результата. Если алгоритм - это строгое следование формальной логике, чему-то определенному, то метод есть постоянная возможность выхода за рамки логики, ее нарушения в эвристических целях -это выход в сферу творчества.
Главное предназначение метода состоит в том, чтобы обозначить проблему, выделить основные регулятивы научного исследования и создать основу для проведения плодотворного научного исследования, т.е. содействовать приращению знания в науке.
Добавим, что обращенность к практике научного познания составляет основу содержательной трактовки понятия научного метода. Деятельностная природа метода проявляется в том, что реально функционирующий, участвующий в познании метод представляет собой динамическое единство знания и умения, когнитивной и практической составляющих, сила норм и познавательных действий. Метод складывается на основе обобщения практики познания. Аккумулируя познавательный опыт в своих нормах н правилах, метод непосредственно участвует в познании, регулируя, упорядочивая процесс научной деятельности, задавая ее стратегию, программу посредством выделения совокупности познавательных шагов, действий и увязывания их в целостной системе познавательного цикла.
8. ОБЪЕКТИВНОЕ И СУБЪЕКТИВНОЕ В МЕТОДЕ
Соотношение объективного и субъективного в методе есть, прежде всего, выражение основного противоречия познания как процесса взаимодействия субъекта и объекта. Процесс взаимодействия субъекта и объекта опосредуется совокупностью условий как природных, так и общественных общественными отношениями людей, формами культуры и общественного сознания, познавательными средствами, методами и т.д. В частности, функция опосредования познавательного отношения субъекта к объекту выполняется методом, во-первых, в процессе функционирования, т.е. его практического участия в научном исследовании, во-вторых, благодаря богатству содержания метода и его структуры, включающей не только знаниевый, нормативно-содержательный, но и операциональный компоненты.
Именно богатство системы метода обусловливает возможность вступления его в отношения как с объектом, так и с субъектом познания. Функцию опосредования, выполняемую методом, надо рассматривать с четом общественного характера процесса познания, всей суммы социокультурных факторов, так или иначе детерминирующих его работу. Поскольку взаимодействие субъекта и объекта в процессе познания предполагает взаимодействие участвующих в данном процессе субъектов, поскольку субъект-объектное отношение опосредуется субъект-субъектным. Но тогда выяснение соотношения объективного и субъективного в методе предполагает учет его социальных характеристик, связей метода с социокультурным окружением, социальными условиями познания.
Надо учитывать также, что, в свою очередь, связь метода с объектом опосредована теорией, что объективное в методе определяется теоретическим знанием объекта, поэтому выявление и анализ проблемы объективного и субъективного сопрягается с исследованием связей метода и теории. Необходим также учет познавательной эффективности метода в процессе решения с его помощью познавательных задач. Неэффективные или слабоэффективные методы либо удаляются из науки, либо совершенствуются с целью повышения их эффективности.
Собственно, вся история научного познания в значительной мере есть история развития методов и познавательных средств. Например, развитие инфитиземальных методов математики шло от механико-геометрических приемов решения задач у Архимеда, Кеплера. Затем оно пополнилось методом флюксий Ньютона. А через дифференциальное и интегральное исчисление Лейбница превратилось в весьма мощный и абстрактный математический анализ, в настоящее время ставший, по мнению математиков, универсальным.
Субъективное начало в методе ориентировано на решение проблемы эффективности исследований. Свидетельством тому может служить история методологии науки, коренной проблемой которой является установление того, в какой степени метод дает возможность ученому в ходе исследования «приблизиться» к объекту, истине, иными словами, в какой степени метод определен объектом и в какой степени он субъективен, т.е. детерминируется познавательными возможностями, способностями субъекта познания. Еще в античности была поставлена задача разграничения методов в зависимости от того, дают ли они знание общего необходимого или оставляют ученого в сфере мнения. В соответствии с этим выделялись аподиктический метод умозрительного содержательного анализа, базирующийся на интуиции и дедукции, силлогистике, как метод, наиболее близкий сути бытия, обеспечивающий постижение сущности, и диалектический метод, детерминируемый неопределенной субъективной сферой чувственного многообразия и ведущий лишь к вероятным высказываниям, характерным для мнения.
Научная методология Нового времени в качестве одной из основных считала задачу очищения метода от всяких искажающих влияний и, прежде всего, стремилась исключить возмущающие воздействия на процесс исследования со стороны субъективных факторов. Так, несмотря на разногласия между приверженцами программы Декарта и научной программы Ньютона, и картезианцы, и ньютонианцы были согласны в том, что из физики необходимо изгнать теорию «скрытых качеств» и базирующийся на ней метод схоластического теоретизирования с его постоянным обращениям к авторитетам (Аристотеля, богословов), а не к экспериментам.
Ученые были единодушны в том, что схоластика уводит познание от действительности. Ф. Бэкон обосновывал необходимость очищения познания от призраков, снижающих познавательную силу научного метода, затуманивающих «естественный свет разума» познающего человека. Иными словами, традиции научной методологии изображать субъективное в методе как нечто негативное, как то, что искажает путь к истине и затрудняет процесс ее достижения, имеет достаточно длительную историю, а в ряде случаев воспроизводится и в настоящее время. И для такой интерпретации субъективного история науки дает довольно много материала; субъективизм в науке действительно играет негативную роль. Однако неверно субъективное в методе отождествлять с субъективизмом, с ошибками и помехами в научном исследовании; надо иметь в виду, его субъективное в научном познании и методе играет также и позитивную роль.
Действительная роль субъективного фактора в научном познании может быть понята с учетом того смысла понятия «субъективное», которое имеет место в философии. Общепринятым в философии является понимание объективного и субъективного как понятий, связанных, прежде всего, с категориями объекта и субъекта, которые представляют собой различие, противоположность человека как субъекта и внешней по отношению к нему, независимой от него действительности. Объективное означает все существующее вне нас, независимо от субъективного (материальный объект, вся действительность в разных формах), а также определенную сторону сознания человека, ту часть его содержания, которая не зависит от него самого, определяется отражаемым объектом, действительностью. Субъективное означает свойственное субъекту, то, что выражает его природу, определенность его существования и деятельности, а также ту сторону сознания человека, которая зависит от него, определяется им. Субъективное проявляется как практическая, познавательная и другая активность субъекта и как внутреннее, непосредственно данное субъекту состояние его психики, сознания, т.е. как нечто идеальное.
Субъективное играет двоякую роль в познавательной деятельности. С одной стороны, субъективный момент деятельности может приводить к ошибкам, неудачам на пути к поставленной цели. История науки показывает, что истина и заблуждение, успех и неудача неразрывно связаны друг с другом, что движение к истине осуществляется только через преодоление субъективной ограниченности человеческого мышления. С другой | стороны, научное познание есть осуществление субъективной активности человека. Оно возможно только как функционирование выработанных субъектом познавательных средств, форм и методов. Поэтому субъективность является неотъемлемой стороной научного познания, существенной (и не только в негативном смысле) характеристикой форм его осуществления. Сами же познавательные формы вырабатываются человеком п ходе предметной и познавательной деятельности, аккумулируют в себе познавательный и практический опыт человечества.
Познавательные формы (методы, понятия и т.д.), будучи способом реализации субъективной активности процесса познания, имеют непосредственное отношение не к объекту, а к самому познанию, практике его осуществления. Именно в познавательных формах фиксируются закономерности, инварианты познавательной деятельности. Причем инвариантное, устойчивое в познавательной деятельности определяется не только объектом (природа объекта, его качественная определенность, безусловно, накладывает необходимые ограничения на процесс протекания деятельности, которая, чтобы быть успешной, должна соответствовать объекту), но и особенностями самой деятельности как общественного явления. Надо иметь в виду, что деятельность реализуется не только в отношениях субъекта и объекта, но и в отношениях между участвующими в ней субъектами. Это означает, что познавательные формы имеют «социальную окраску», становятся социально закрепленными нормами, правилами осуществления деятельности. Познавательные формы, выражая инвариантное, закономерное в деятельности, создают тем самым необходимые условия для ее регуляции. Являясь способом фиксации, закрепления многолетнего опыта практического осуществления деятельности, познавательные формы выступают в качестве той основы, на почве которой субъект деятельности получает возможность реализовать свои способности, свое субъективное стремление к свободе творческого самовыражения. Но вместе с тем они не только обеспечивают свободу субъекта в деятельности, но и определенным образом регулируют его активность.
Именно в познавательных формах фиксируется необходимость употребления тех или иных средств, приемов деятельности, порядок их применения, обоснование их связи, последовательности и т.д. Формы выражают правильность осуществления деятельности. Выполнение регулятивной функции обеспечивается еще и тем, что познавательные формы опосредованно относятся к объекту деятельности, содержат в себе объективные отношения к действительности; формы познавательной деятельности представляют собой единство объективного и субъективного, индивидуального и общественного. Аналогичным образом следует рассматривать такую важную познавательную форму, как метод научного познания.
Необходимо учитывать детерминацию метода как со стороны объекта, так и со стороны субъекта познания. И, соответственно, подходы, преувеличивающие либо субъективную, либо объективную сторону метода, будут односторонними. Например, Марбургская школа неокантианства преодолевает кантовское противопоставление трансцендентального субъекта трансцендентальному объекту (вещи в себе) за счет отказа от «вещи в себе». В результате бытие трактуется как содержание логической формы, так сказать, как находящееся внутри субъекта познания, внутри форм научной деятельности. Самостоятельное существование объекта, вещи в себе отрицается; научный метод с этой точки зрения не зависит от объекта, действительности, поскольку сам объект оказывается результатом творческой созидательной работы мышления, а «понятия науки не являются больше копиями чувственных объектов, а, скорее, символами для организации и функциональной связи внутри существующего. Причем природа, сущность метода усматривается неокантианцами в логическом развертывании мышления, в логическом построении объекта, так что из логики развертывания мысли выводится логика, закономерность действительности. Иначе говоря, в соответствии с общетеоретической установкой философии неокантианства метод определяется через познавательную деятельность субъекта как логическая закономерность его мышления.
В русле течений, субъективизирующих метод, находится и широко распространенное среди ученых представление о методе как субъективных способностях делать открытия в науке. Научный метод с этой точки зрения есть сугубо индивидуальный личностный механизм решения научных проблем, сводящийся к таким психологическим феноменам, как интуиция, воображение, гибкость, нестандартность мышления, зоркость видения проблем и т.д.
Такого рода представления о методе формируются, главным образом, на основе самонаблюдения своей собственной творческой деятельности в науке и, как правило, осмысляются и описываются на уровне здравого смысла с привлечением понятий психологии, в меньшей мере логики, философии и т.д. Так создается своего рода эмпирический (может быть, не совсем строго разработанный и обоснованный с позиций философской методологии науки) уровень осмысления практики научного исследования, возникает эмпирическая фиксация практической работы метода в научном исследовании. Показательны, в частности, рассуждения о том, что первый шаг в научном исследовании - открытие проблемы - всегда будет зависеть от подсознательного, интуитивного ощущения. Оно же подсказывает нам, что среди тысяч вещей, которые мы видим, та или другая представляет собой ключ к чему-то большому и совершенно новому. Если хотите, это догадка, бессознательно опирающаяся на весь предыдущий опыт, но все-таки догадка, а не плановый процесс, контролируемый логикой. (Г. Селье и др.).
Некоторые авторы разделяют ученых на открывателей и на решателей проблем. Названный выше Г. Селье говорит, что первые опираются главным образом на инстинктивное понимание путей природы, обостренное чувство важности предыдущих наблюдений и взаимосвязей явлений в самом широком смысле слова. Вторые - «решатели проблем» - берут что-то уже известное и пытаются расчленить его, чтобы понять структуру и механизм. Они целиком опираются на логический анализ, на химические и физические методы. Однако в науке и искусстве природный талант может быть подавлен чрезмерным количеством обязательной учебной работы и рутинной технической тренировки; в то же время его можно развить при обучении под руководством опытных мастеров, стиль которых заслуживает подражания.
Высказывания Селье представляют собой типичный пример индивидуальных форм внутринаучной рефлексии, в которых ученые пытаются осмыслить особенности научной деятельности. Размышления ученых о своей собственной научной деятельности являются ценным свидетельством тех или иных сторон творчества в науке, помогают понять его природу. Например, очевидный теперь для всех факт, что решение научных проблем во многом зависит от субъективных индивидуальных характеристик метода исследования, впервые был осмыслен именно на этом уровне рефлексии. Ведь любая проблема, представляя некий объективный, в какой-то мере независимый от конкретных ученых уровень науки, степень освоенности изучаемого объекта, образует собой форму детерминации научного поиска не только состоянием знания, но и самим объектом. В этом смысле все ученые равны перед проблемой, объектом, поскольку он определяет их усилия, но они не равны в своих результатах. Так, многие пытались создать классификацию химических элементов, однако решил задачу Д.И. Менделеев. Иными словами, на этом уровне рефлексии было найдено еще одно подтверждение того обстоятельства, что детерминированность исследования, его метода объектом не абсолютна, что при всех прочих равных условиях решающую роль играет субъективное, индивидуальное в методе.
На этом уровне рефлексии был осознан также факт чрезвычайной сложности индивидуально-личностных сторон научного метода, невозможность явным образом выразить данную компоненту метода. Сохраняется неартикулируемый, явственно чувствуемый, по словам А. Пуанкаре, но плохо формулируемый характер правил, предписаний метода. Это признается теперь специалистами в области психологии научного творчества, в области теорий искусственного интеллекта, эвристики и др. Признается также, что дисциплины, специально занимающиеся исследованием закономерностей, механизмов индивидуального творчества, преуспели в этом не так сильно, как хотелось, недалеко ушли от того уровня понимания, который был достигнут в саморефлектирующих размышлениях ученых. Отмечается, например, что весьма частая апелляция к таким понятиям, как воображение, озарение, догадка, интуиция, мало что добавляет к пониманию субъективно-личностной стороны научного познания. Марио Буше но этому поводу иронизировал, утверждая, что интуиция - это коллекция хлама, куда мы сваливаем все интеллектуальные механизмы, когда мы не знаем, как их проанализировать или даже как их точно назвать.
В саморефлектирующих высказываниях ученых содержится первичное, непосредственное описание параметров, характеризующих такой компонент метода, как умение, навык, искусство вести научное исследование. Именно в них была отмечена необходимость практического усвоения подобного рода неартикулируемого знания и практической передачи его от учителей к ученикам. Именно ученые-практики первые установили на собственном опыте, что без этих не поддающихся формализации приемов и навыков, без их практического усвоения, применения и дальнейшего совершенствования невозможен научный метод, невозможно развитие туки. Позднее эта сторона научного метода стала предметом специальных методологических исследований, например, в работах М. Полани.
Конечно, надо иметь в виду, что самонаблюдение своего творчества и выдвигаемые на этой основе методологические рекомендации и обобщения в целом не выходят за рамки индивидуального опыта, субъективны и, как правило, не приобретают общенаучного значения. Дело в том, что измышления о специфике научного творчества и научного метода осуществляются учеными попутно, поскольку главная цель их работы - изучение окружающей действительности, решение научных проблем. Необходимость обращения к задачам методологической рефлексии возникает при разного рода затруднениях, заминках в исследовании, когда обнаруживается слабость методологического инструментария, неэффективность старых методов. Неудивительно, что попутное, стихийное осмысление методологических задач в практике научного познания носит эмпирический характер, пользуется недостаточно отрефлектированными несистематизированными представлениями.
Имеет место и прямо противоположная позиция, преувеличивающая роль объекта в научном познании, обосновывающая полную зависимость метода от объекта. Метод трактуется как духовный аналог диалектики предмета и, соответственно, всем категориям, каждому компоненту метода находится, по Л.K. Науменко, «реальный объективно-предметный эквивалент в логике самих вещей». Преувеличение роли объекта ведет к неправильному пониманию субъективной стороны познания и научного метода, а именно его активности, оснащенности орудиями, приспособлениями для более эффективного «приближения» к объекту, для постижения его природы.
В соответствии с данным подходом субъективная активность в познании не нужна, научный метод должен пассивно следовать природе объекта, который как бы «раскрывает» себя для субъекта в процессе исследования. С этой точки зрения правила, операции метода, законы деятельности совпадают с закономерностями объекта, непосредственно их воспроизводят. Но законы, как и формы, методы деятельности не могут совпадать, например, с законами природной действительности, поскольку деятельность характеризует человеческое бытие; хотя и законы, и формы, и средства, и методы, и сама деятельность, чтобы быть успешной, должны соответствовать материальной действительности, т.е. все должно быть приспособленным, но не совпадающим с ней. Формы и методы познавательной деятельности вырабатываются человеком, законы деятельности автономны, существуют внутри деятельности, выражают «господство» субъекта, человека над действительностью. Разумеется, субъективность познания и применяемых в нем методов не может быть абсолютной, поскольку и сам субъект, его познавательная, предметная деятельность, равно как и ее формы и методы, имеют объективную детерминацию, определяются объектом. Однако отсюда не следует, что деятельность, ее формы, методы непосредственно «вырастают» из действительности, абсолютно с ней совпадают.
Стремление вывести метод непосредственно из объекта проистекает из узкого понимания субъективности познания, сведения субъективности к ошибкам и заблуждениям. Но если бы метод непосредственно «вырастал» из объекта, полностью с ним совпадал, то были бы невозможны ошибки и неудачи в исследовании, а эффективность метода была бы абсолютной. Однако практика научной деятельности говорит о том, что познание в науке осуществляется в неразрывном единстве истины и заблуждения. С другой стороны, метод, полностью совпадая с объектом, давал бы стопроцентный результат, гарантировал бы стопроцентное решение научных задач, и тем самым превратился бы в алгоритм или пресловутую логику открытия, обоснованием которой в свое время занимались некоторые философы.
Но на основании алгоритма новое знание не получается; следовательно, построение логики открытия, которая приводила бы автоматически к новому научному знанию, научным открытиям, как признано теперь, неосуществимо. Иначе говоря, главное назначение субъективности не в том, что при определенных условиях она может привести и зачастую приводит исследователя к ошибкам; главный смысл субъективности познания и метода состоит в том, что субъективность - это, прежде всего, проявление активности познающего сознания, познавательной деятельности. Только благодаря активному либо практическому, либо теоретическому взаимодействию с объектом, основанному на использовании определенных средств, методов, ученый и способен познавать действительность. Субъективность представляет собой способ, форму преодоления неполноты, ограниченности знания, т.е. средство достижения его объективности, истинности. Фундаментальная роль субъективной составляющей познания наглядно обнаружилась в ситуации с квантовой механикой. Оказалось, что в отличие от классической физики, которая пренебрегала взаимодействием между субъектом и объектом, объектами и измерительными приборами, в квантовой механике это взаимодействие образует существенную часть познавательной ситуации. По мнению Н. Бора, данное взаимодействие «ставит абсолютный предел для возможности говорить о поведении атомных объектов как о чем-то не зависящем от средств наблюдения». Выявилась принципиальная невозможность полностью устранить субъективный момент в экспериментальном исследовании элементарных объектов, абстрагироваться от роли в этом процессе измерительных средств, приборов.
Понимание метода как непосредственного отражения объекта уязвимо в том отношении, что ведет к логическому парадоксу. В самом деле, если метод есть аналог, воспроизведение объекта, то это значит, что объект уже познан, известен и, стало быть, метод исследования в этом случае не нужен. А если объект еще не познан, то откуда появляется метод, как его сконструировать, ведь он, по определению, должен быть отражением объекта, его аналогом. Иными словами, получается, чтобы сформировать метод, надо предварительно, до метода изучить объект, на основании этого знания сконструировать метод. Но если исследование идет до метода, без метода, то теряет смысл выработка метода. Получается, что метод вообще не нужен научному познанию, что противоречит практике научных исследований.
Метод не может быть полным аналогом объекта, поскольку объект не познан, его еще предстоит изучить. Наоборот, предназначение метода как раз и состоит в том, чтобы служить средством исследования непознанных объектов; эту функцию он выполняет, аккумулируя познавательный опыт субъекта научной деятельности. Субъективность выступает также как характеристика идеального. Имеется в виду идеальный характер познавательных форм и образов (научных теорий, понятий, идей, методологического знания и т.п.), вырабатываемых ученым, субъектом, принадлежащих его внутреннему психическому миру и в этом смысле субъективных. Идеальное бытие эти познавательные формы и образы получают в результате процесса интериоризации, т.е. перенесения во внутренний, индивидуально-личностный план сознания того или иного конкретного субъекта научной деятельности. Это происходит в ходе практического осуществления познания, в процессе практической работы научного метода, когда интерсубъективное, общее для всей науки достояние (теории, идеи, методы и т.п.) усваиваются индивидами, включаются в поток мыслительной деятельности того или иного ученого, воспринимаются и переживаются им как его внутреннее психическое состояние. Только благодаря этому перенесению во внутренний план индивида познавательная форма действительно становится полным достоянием субъекта, в виде идеальных образов попадает в полную зависимость от исследователя, субъекта.
Только благодаря этой «операции» познавательная форма становится живой, работающей, переходит из отчужденного, объективированного состояния в форму непосредственного практического участия в индивидуальной научной деятельности того или иного отдельного ученого, субъекта познания. Можно сказать, что идеальный познавательный образ, существующий в виде психического переживания, как психический феномен, включающий в себя, кроме логических, рациональных, еще и волевые, эмоциональные компоненты, выражает субъективность в самом узком смысле слова, поскольку, принадлежа внутреннему миру человека, субъекта, полностью зависит от последнего. Разумеется, субъективность такого рода не абсолютна, так как содержание познавательных форм (понятий, теорий, методологического знания, операций метода и т.д.) определяется объектом, детерминируется объективными условиями осуществления научной деятельности. Иными словами, говоря о соотношении объективного и субъективного в научном познании и его методе, необходимо учитывать относительность разделяющих их границ.
Субъективность в узком смысле имеет место также и в процессе функционирования научного метода. Интериоризованное, перенесенное внутрь сознания ученого методологическое знание, операции, приемы метода образуют основу для формирования индивидуального навыка к исследованию, субъективного «искусства», которое только и приводит метод в рабочее, функционирующее состояние, включает его в процесс практического осуществления научного познания. Именно в искусстве, индивидуальном умении ученого, в его способности творчески освоить объект и заключается субъективная сторона метода.
Чтобы обладать умением, искусством исследования, мало располагать предметным знанием и знанием правил, норм исследования, необходимо иметь практический опыт, навык их применения в ходе познавательной деятельности, необходимо иметь то, что М. Полани назвал личностным знанием. Иными словами, в практическом умении проводить научное исследование соединяются, сливаются знания, навыки и действия, ставшие достоянием внутреннего психического мира субъекта деятельности. Как невозможно умение без знания и навыков, так невозможен метод лишь в качестве знания без умения, без определенного опыта его практического использования. Субъективность проявляется не только в затруднениях, ошибках, но и в индивидуальном, отклоняющемся от стандарта употреблении метода, что обусловлено рядом обстоятельств: сложной природой объекта или самого метода, личным пристрастием ученого, влиянием коллег и т.д. Например, достаточно отработанный в социологии метод анкетного опроса, базирующийся на критериях надежности, точности способа обработки данных, репрезентативности исследования, заключает в себе множество вариантов, возможностей его индивидуального использования. Как подчеркивает В.А. Ядов, эта сторона метода анкетирования складывается из сочетания, столкновения сложности, динамичности объекта исследования (мотивов, побуждений, склонностей, мнений людей), лексики опроса, статуса опрашиваемого, конструкции вопросов, их семантики, намерений исследователя и т.д.
Субъективность метода, однако, не может быть абсолютной; и умение, и навыки, и другие составляющие субъективной стороны метода нуждаются в объективном основании. Прежде всего, субъективное умение, искусство ученого базируется, имеет основание в закономерностях познавательного процесса, в практике его осуществления и в объективных законах реальности. Это означает, что метод обладает двойственной природой, содержит в себе как субъективную, так и объективную стороны. Метод, являясь принадлежностью субъекта, должен одновременно быть адекватным объекту, т.е. его познавательные действия, операции должны быть приспособлены к исследованию определенного объекта, так или иначе учитывать его специфику. Причем такого рода приспособленность к объекту, специализация методологического знания и операций метода может достигать большой степени не только в рамках одной и той же научной дисциплины, но даже в исследованиях одного и того же, но достаточно сложного объекта.
Связь метода и объекта хорошо просматривается, однако она носит опосредованный характер. Как уже говорилось, неверно определить метод как непосредственное отражение объекта. Опосредующим звеном, соединяющим метод и объективную действительность, выступает предметное, содержательное знание, теория объекта. Именно тесная связь метода с предметным знанием является основной гарантией его эффективности, служит объективным основанием его функционирования в процессе исследования. Метод не может быть непосредственным отражением объекта еще и потому, что в своем составе содержит систему норм, правил деятельности, которые обращены не к объекту, а к ученому, субъекту деятельности. Нормативное знание в методе содержит определенные требования к выполнению познавательной деятельности, что является необходимым условием ее регуляции; ученый должен эти требования выполнять, ими руководствоваться.
Разумеется, предметное и методологическое знание взаимосвязаны, образуют единую в рамках метода систему, поскольку нормы и правила метода должны соответствовать объекту или предметному знанию, отражающему объект. Такое переплетение, взаимные связи нормативного и предметного знания легко обнаруживаются в методах тех наук, где развиты эмпирические исследования. Столь же тесно взаимосвязано содержательное, предметное и нормативное знание и в теоретических методах исследования, где исследователь имеет дело не с самим материальным объектом, а «работает» с понятиями, идеями, моделями, математическими формализмами, представляющими предмет, оперирует ими мысленно, исходя из вложенного в них содержания.
Другим объективным основанием метода выступает практика научного познания. Сама практика в разных ее формах, в том числе, разумеется, и практика познавательной деятельности, осуществляется как совокупный общественный, исторический процесс, обладающий своими особенностями, закономерностями, и в силу этого являющийся объективным основанием для любого данного ограниченного историческим временем и условиями конкретного научного исследования. Это означает, что правила и познавательные действия, операции метода базируются на осмыслении особенностей, закономерностей процесса научного познания. Такое осмысление приводит к тому, что в методе появляется знание, которое отражает сам процесс исследования, практику научной деятельности.
Обычно это знание представлено в методе совокупностью философских, методологических и других, меньшего уровня обобщения, высказываний. Кроме того, в практике происходит снятие противоположности субъекта и объекта, совпадение форм осуществления субъективной деятельности и форм развертывания объективного процесса, так что формы деятельности (приемы, исследовательские операции) непосредственно выражают, фиксируют закономерности последнего. Именно поэтому в нормах, предписаниях, приемах и операциях метода сосредотачивается, обобщается многовековой опыт научной исследовательской работы. Иными словами, нормативное содержание предписаний метода непосредственно связано с отражением практики познания, а с другой стороны, переходит, развертывается в последовательность тех или иных операций, исследовательских действий. Такая тесная связь и взаимообусловленность нормативного знания, операций и знания, отражающего практику познания, и определяет правильность метода, которая связана с объектом через истинность предметного знания и которая, в свою очередь, обеспечивает его эффективность.
Таким образом, метод в целом, равно как и основные его составляющие - когнитивная и операциональная стороны, - обладают двойственной природой, представляют единство объективного и субъективного, связаны как с объектом, так и с субъектом исследования. Субъективность научного метода наиболее полно проявляется в деятельности, в процессе его функционирования; это динамическая, процессуальная характеристика метода, требующая тесного единства метода как общезначимого, общенаучного средства с индивидом, отдельно взятым ученым, его умением, искусством применять, использовать этот метод в исследовании. Научный метод существует не только в форме знания, не только в объективно-отчужденном от субъекта виде, но и в форме «включенности» субъекта в деятельность метода и, стало быть, в форме «включенности» метода в практику науки.
Субъективное в методе, в особенности такой его компонент, как умение, навык к исследованию, творческому мышлению, творческому решению научных задач, формирующийся у ученого на основе усвоения опыта предшественников, делает метод живым, работающим, непосредственно участвующим в научных исследованиях. Формирование же умения, единства субъекта и метода осуществляется в процессе интериоризации, перенесения норм метода во внутренний психический план индивида, т.е. в процессе усвоения ученым метода, превращения его предписаний, операций, используя терминологию Полани, в личностное знание.
Такое интериоризованное, идеальное бытие метода неверно сводить лишь к чисто индивидуальным характеристикам сознания ученого. Функционирование метода, его работа в исследовании обеспечивается ученым на основе не только сугубо личных пристрастий, личного умения, но и системы ценностей, принятых в научном сообществе, в обществе в целом. Иными словами, методу присущи социальные характеристики, детерминированность социокультурными условиями научного познания. Выбор и использование метода происходит не автоматически, а на основе социального опыта субъекта, в который наряду с теоретическими, рациональными входит целый комплекс ценностных представлений, например, представления ученого о важности решаемых проблем, о значимости тех или иных научных положений, идей, о роли своей собственной познавательной деятельности и т.п. Можно сказать, система социальных ценностей, разделяемая ученым, контролирует, регулирует как процесс научной деятельности в целом, так и работу научного метода.
9. МЕТОД КАК ФОРМА РЕФЛЕКСИИ
Как уже говорилось, метод в своей структуре содержит определенное знание и опирающуюся на это знание совокупность познавательных действий. Это дает возможность методу регулировать процесс научной познавательной деятельности, а также обеспечивать приращение знания, осуществлять эвристическую функцию получения нового научного знания. Кроме того, метод, входя в состав науки, выполняет рефлексивную функцию, т.е. функцию осмысления самой исследовательской деятельности в науке.
При этом основные компоненты метода по-разному участвуют в выполнении рефлексивной функции. Так, входящее в состав метода знание принадлежит рефлексивному уровню научного познания, поскольку в методологическом знании отражаются, обобщаются закономерности и особенности протекания процесса научного исследования. А операциональной. т.е. деятельностно-практической стороной метод непосредственно «погружен» в процесс исследования той или иной предметной области, и это значит, что операции, познавательные действия метода «работают» не на рефлексивном, а на предметном уровне познания.
Научный метод для успешного функционирования должен использовать двоякого рода знание: предметное, т.е. знание об объекте, и собственно методологическое, нормативное. Например, применение экспериментального метода в науке невозможно без определенного теоретического фундамента (в современной физике, в частности, эксперимент выступа-то своего рода «практическим звеном» в цепи теоретических построений, поскольку теория и определенным образом предсказывает эксперимент, и организует его). Но, с другой стороны, осуществление эксперимента предполагает использование экспериментатором методологического знания в виде различных предписании нормативного характера. К ним можно m нести и требования точности измерения, и рекомендации по изменению необходимых для эксперимента величин, и методики учета и исправления разного рода ошибок (систематических и случайных), и правила пользования приборами и т.п.
Ясно, что предметное знание метода является отражением действительности, а именно той предметной области, для исследования которой и создается метод. В силу того, что предметное знание направлено на объект, относится к нему, а не к процессу познания, оно не может быть рефлектирующим относительно самого себя, не может выполнять рефлексивную функцию. Другое дело - собственно методологическое, нормативное знание. Это знание отражает, прежде всего, процесс и результат познавательной деятельности в науке и, стало быть, выступает формой ее самосознания, формой методологической внутринаучной рефлексии.
Поскольку методологическая рефлексия относится и к теоретическому, и к эмпирическому исследованию, она как бы воспроизводит эту общую структуру научного исследования уже в рамках методологического анализа. Можно сказать, что в известных границах методологическое знание как составляющая метода распадается на общие теоретические построения и предписания более низкого уровня обобщения. Все это накладывает отпечаток на характер отражения практики научного познания методологическим знанием. Так, методологические предписания, непосредственно включенные в конкретный познавательный процесс, в большей степени определяются не общими закономерностями и особенностями научного познания, а скорее характеристиками предмета и специфическими условиями осуществления исследования. Иными словами, методологическое, нормативное знание низшего уровня обобщения, непосредственно вытекая из практики исследования, специфики объекта и познавательных задач, в большей мере включается в предметный, а не рефлексивный уровень научного познания.
Кроме того, специфика рефлексии методологического знания практики научного познания как объекта этой рефлексии коренится в природе самих норм метода. Как известно, любые нормы, в том числе, разумеется, и нормы, предписания метода по своему существу отличаются от предметного, содержательного знания тем, что несут информацию, относящуюся не к объекту, а, прежде всего, к субъекту познания или действия. Главное предназначение подобной информации заключается в том, чтобы определенным образом регулировать процесс познания, т.е. «заставлять» ученого вести научное исследование правильно, в соответствии с принятыми в науке предписаниями. Конечно, нормы метода согласуются с объектом, в данном случае с практикой познания, в известной мере содержат информацию о ней, поскольку метод должен обеспечивать успех познания, однако эта информация, безусловно, носит опосредованный характер.
Выполнение методологических норм обеспечивается, прежде всего, стимулами, поощрением, признанием научных достижений того или иного ученого. Это имеет особое значение для научной деятельности, поскольку научное сообщество не только и не столько подвергает санкциям ученого за нарушение требований метода, как это происходит, например, при нарушении социальных, моральных, религиозных и других норм, сколько поощряет за успешное решение научных проблем признанием его авторитета. Тем самым, в нормах проявляется не отражательное, точнее, познавательное, а ценностное отношение субъекта деятельности, исследователя к условиям ее осуществления.
Вместе с тем методологические нормы, предписания метода, несомненно, аккумулируют в себе тысячелетний познавательный опыт человека, так называемый практический, эмпирический здравый смысл науки, являясь в этом отношении отражением, обобщением практики научных исследований. Надо учитывать сложность процесса формирования нормативного знания и, прежде всего, опосредованность данного процесса практикой познания. Надо учитывать, что нет прямой логической связи между предметными, фактическими суждениями и суждениями нормативными. Нормативные, алетические, и более широкие аксиологические суждения в отличие от предметных, фактических, дескриптивных не могут оцениваться в категориях «истина-ложь». А.А. Ивин подчеркивает, что оценка, а значит и нормы, не имеют истинностного значения, они не могут быть истинными или ложными. Истина и ценность - две полярные и вместе с тем взаимодополняющие категории. Нормы метода не могут непосредственно отражать действительность; их согласование, т.е. соответствие действительности обеспечивается как результат практики познавательной деятельности, в ходе которой они формируются. Такое формирование осуществляется на основе преимущественно эмпирических процедур, непосредственно «вплетенных» в практику познания. В данном случае нормы метола создаются стихийно, в процессе естественноисторического развития научной деятельности, в плоскости так называемого здравого смысла. Механизм формирования норм может быть проиллюстрирован, разумеется, с учетом приблизительности такой иллюстрации, на примере из истории образования норм технологии трудовой деятельности.
В работах, исследующих технику и технологии древнейших производств, указывается, что историческое развитие приемов трудовой деятельности по созданию первых орудий труда проходит длительный путь от простейших операций раскалывания, оббивки, ретуши (ударной и отжимной) до шлифования, сверления, пиления и т.д. При этом, согласно Ф. Кликсу, количество операций и простейших трудовых действий постоянно возрастает. Если человек прямоходящий обрабатывал свои орудия за одну операцию, включавшую 25 ударов, ранний неандерталец - 2 операции в 65 ударов, поздний неандерталец - 3 операции в 111 ударов, то нож кроманьонца требовал для своего изготовления 8 операций в 244 удара. Главное же заключается в том, что наряду с возрастанием количества трудовых действий и операций достигается их расчлененность, соразмерность, происходит увязывание этих действий в определенную технологическую цепочку, стабилизация, стандартизация и закрепление первоначально в форме живых образцов деятельности, которые передаются от одного субъекта деятельности к другому и которые, по сути, представляют собой первичное, еще невербализованное нормативное знание.
В сущности, становление и закрепление технологии трудовой деятельности, предполагающее подражание, утверждение, создание, модификацию, типизацию, представляет собой практическую модель нормативной структуры деятельности, модель, которую можно в приближении посчитать аналогом формирования нормативной структуры практики научного познания. И первоначальная эмпирическая нормативная структура познавательной деятельности также складывалась стихийно, на базе многолетнего опыта практического осуществления познавательных операций. Их типизация, т.е. обобщение и закрепление, проходила путь от практически сложившихся норм к правилам и стандартам, вырабатываемым на основе теоретических средств философии и методологии науки.
Наряду с эмпирически-практическим способом формирования методологических норм развивается теоретический способ, основанный на философской методологической рефлексии, на знании структуры, свойств, закономерностей познавательной деятельности в науке. Кроме того, на сложный характер нормативного обобщения практики познавательной деятельности указывает ценностная природа норм метода, которые предназначены для выражения правильности, императивности научного исследования, для его регуляции. Другими словами, в нормах метода реализуется единство познавательного, ценностного, практического и социального аспектов научного познания.
Эмпирически-практическая природа низших уровней методологического знания осмысливается на теоретическом уровне. Это приводит к тому. что в методе формулируется ряд общих теоретических положений относительно глобальных характеристик познания, его законов, средств осуществления. Как уже отмечалось, эти задачи выполняются философией, которая занимает важное место в совокупности методологического знания. История научного познания свидетельствует о том, что философию всегда интересовали проблемы науки, ее методологии, вопросы обоснования и формирования научного метода и т.д. Важно отметить, что рефлексия над познанием, фиксируемая в научном методе, исторически меняется вместе с развитием науки и самой философии.
Исследователи отмечают, что от эпохи к эпохе может значительно варьировать соотношение удельного веса общетеоретического и практически-эмпирического знания в структуре метода. Скажем, представления о научном методе в эпоху господства натурфилософии существенно отличны от аналогичных в современной философской науке. Для натурфилософии, как известно, характерно обилие умозрительных конструкций, слабо связанных с практикой научного познания. Философия Нового времени, например, изображает процесс познания, используя в основном главную для тогдашнего подхода антиномию: чувство-разум. Дихотомия сенсуализма и рационализма возникает на основе преимущественно философского умозрительного анализа познания, восходящего еще к традициям античности; эта дихотомия, безусловно, накладывает свой отпечаток и на попытки создать учение о Методе.
Так, например, метод в учении Р. Декарта сконструирован в соответствии с мерками рационализма. В качестве эффективных познавательных средств признаются только интуиция и дедукция, в то время как чувство и воображение служат лишь вспомогательным средством, зачастую, по мнению Декарта, вводящим исследователя в заблуждение. Интуиция и дедукция, по Декарту, являются «простейшими и первичными», их правильное применение основывается на ясности, отчетливости и самоочевидности как интуиции, так и дедуктивных выводов. Смысл метода заключается н их постепенном, последовательном, логически упорядоченном применении. Рационалистическая установка завершается типично натурфилософским убеждением в том, что конечной целью применения метода является отыскание абсолютного, т.е. очевидных и простейших первоначал и достижение «истин относительно любой вещи», иными словами, построение всеобъемлющей, универсальной науки.
Декарт писал, что наука должна содержать в себе первые начала человеческого разума и простирать свои задачи на извлечение истин относительно любой вещи. У Декарта можно встретить и предписания практически-эмпирического характера, которые он сформулировал, опираясь на практику научного исследования, в том числе и на свой личный опыт. Однако эмпирическое методологическое знание, используемое Декартом, само по себе не образует связной целостной системы. Целостность метода достигается в результате применения Декартом общих натурфилософских допущений относительно природы познания, которые занимают в системе его метода доминирующее положение. Посредством соединения в одной системе методологического знания общетеоретических и практически-эмпирических положений конструируется идеал истинного познания. У Декарта он более подходит для математического, нежели естественнонаучного познания. Принятый идеал отрицает несовершенные с его точки фения подходы и методы.
Отрицающая компонента характерна для любого метода, любой методологии. В методе Декарта можно указать на знаменитое методологическое сомнение, дополняемое им критикой схоластического аргументирования ссылками на авторитет священного писания или древних авторов, а также обоснованием необходимости отрицания темного и вероятного знания. Декарт не принимает методологию своего великого современника Галилея, упрекая последнего в том, что он вел исследование не планомерно и, не рассматривая первопричин природы, искал объяснения только некоторых частных явлений, следовательно, он строил без фундамента.
Пример методологии Декарта показывает, что общетеоретическое методологическое знание, без которого невозможно построить научный метод, является важнейшей формой научной рефлексии. В нем фиксируются основные характеристики процесса познания, обосновывается и формулируется познавательный идеал, а также отрицаются «неистинные», т.е. не соответствующие принятому идеалу подходы и методологии. Далее. Из всей совокупности методологического знания, входящего в научный метод, главенствующую роль играют общетеоретические, философские положения, которые, во-первых, логически упорядочивая практически-эмпирическое знание, образуют целостную систему методологической рефлексии, во-вторых, ими организуется, упорядочивается не только знание, входящее в метод, но и совокупность познавательных действий метода. Иными словами, под эгидой общетеоретических, методологических установок создается вся система метода, включающая в себя и знание, и познавательные действия.
Все это позволяет контролировать весь ход исследования, ибо метод охватывает всю структуру деятельности в целом, отбирая и регулируя характер познавательных действий и средств, а также способ их применения. Методология Декарта подтверждает это. Как уже отмечалось, общефилософская рационалистическая установка Декарта объясняет, почему он в качестве основных познавательных действий метода выделяет интуицию и дедукцию, а чувства или методическую энумерацию относит к числу дополнительных, вспомогательных. Неслучайна у Декарта и последовательность выполнения познавательных действий предложенного им метода. В соответствии с рационалистическим идеалом познания и общефилософской установкой Декарта исходным пунктом, основой познания должно быть достижение с помощью интуиции абсолютно достоверного истинного знания (темное, вероятное знание Декарт вообще исключает) относительно небольшого числа первоначал.
Следующее познавательное действие метода заключается в том, чтобы из полученного знания с помощью строгой дедукции, проверяемой на каждом шагу интуицией, через цепь выводов получить множество следствий. Итогом, конечной целью науки является достижение исчерпывающего знания обо всех вещах. Таким образом, общетеоретическое философское знание, входящее в метод, не только «рефлектирует» относительно норм, приемов, свойств и законов научного исследования, но и теоретически их обосновывает, а также определяет их выбор, предпочтение одних перед другими, взаимную связь соответствующих целям исследования познавательных действий, шагов и упорядочивает последовательность их применения. Это значит, что рефлектирующее знание метода должно достаточно строго контролировать весь путь научного исследования таким образом, чтобы метод мог выступать философски обоснованной программой познания, технологией производства нового знания.
10. МЕТОД И ТЕОРИЯ
Как показывает история познания, становление науки в качестве специализированной познавательной деятельности предполагает формирование ее элементов, среди которых важное место занимают теория и метод. Образование системы научной деятельности не может считаться завершенным, а наука вполне оформившимся специфическим видом познания, если не сложились теория (или совокупность теорий) как относительно замкнутая, логически упорядоченная и самостоятельная по отношению к философии система знания, относящаяся к определенной предметной области, и особый, присущий только науке способ, метод исследования действительности. Иными словами, само становление науки представляет собой, кроме всего прочего, и процесс формирования теории и метода.
Надо иметь также в виду, что функционирование и дальнейшее развитие науки происходит как процесс определенного взаимоотношения, взаимодействия теории и метода, взаимодействия, которое в значительной мере определяет прогресс научного познания. Наконец, значение проблемы соотношения теории и метода определяется не только объективно занимаемым ими местом и их ролью в системе научного познания, но и степенью их «отрефлектированности», т.е. степенью осмысления и понимания как среди ученых, так и среди философов.
Рассмотрение соотношения метода и теории должно учитывать особенности выполняемых ими функций в научном познании, а также специфику их строения. Теория, будучи результатом в системе научной деятельности, призвана отражать объект, его сущностные характеристики; это всегда обобщенное отражение сущности. Метод же, являясь средством в системе научной деятельности, связан, прежде всего, с практикой познания, процессом исследования. Формируясь как отражение особенностей, закономерностей научного познания и как обобщение, фиксация опыта практического его осуществления, метод предназначен для регуляции познавательной деятельности. Такого рода регуляция, базирующаяся, с одной стороны, на рефлексии относительно научной деятельности, а с другой стороны, предполагающая выработку и практическое применение в ходе научного исследования определенных методологических норм, регулятивов, обеспечивает достижение истинного знания о действительности, т.е. выполнение функции приращения знания.
Выполняемые методом, методологической деятельностью эвристическая, регулятивная и рефлексивная функции образуют фундамент рациональности, упорядоченности и научного познания, превращают науку в самоуправляющуюся, саморазвивающуюся систему деятельности, направленную на по лучение истинного знания.
В философии существует традиция рассматривать метод как нечто достаточно самоценное, автономное и, в определенной степени, первичное по отношению к предметному знанию. Такой подход исходит из представления, что получение самого знания возможно только на основе метода. который в этом смысле предшествует знанию, определяет его формирование. Уже в античной философии обосновывалась идея о том, что специфика и ценность получаемого знания определяется методом его получения. В качестве примера может служить античное представление о том, что использование чувственных данных, опора на чувственность и вероятные, правдоподобные рассуждения оставляют познание в сфере мнения. И, напротив, применение интуиции, силлогистики является фундаментом научного знания, или знания сущности. Позже на это обстоятельство указывал Р. Декарт. Он рассматривал метод как фундаментальный элемент науки и культуры. Декарт подчеркивал фундаментальное значение метода для применения разума, развития наук и заявлял о том, что его собственные соображения о методе предлагаются не для научения других методу, а для своего рода отчета, фиксации личного опыта исследования. Далее обсуждение проблемы метода, содержания его понятия осуществляется Декартом в соотношении с понятиями знания или науки, включая математику, философию, богословие и ложное знание, представленное магией, алхимией, астрологией, а также с понятиями опыта, разума как познавательной способности человека, логики. Такого рода подход, т.е. рассмотрение проблемы в широком контексте, а не только в соотношении с теорией, дает возможность Декарту обосновать фундаментальную роль метода в познании.
Традиция понимания метода как фундаментального и относительно самостоятельного независимого компонента научного познания поддерживается и в современной философии. Независимость, автономность метода, в частности, от теории видится в необходимости исключать из состава теории всякие указания на творческую активность исследователя, т.е. любые описания способов и средств приобретения нового знания, относящихся к компетенции метода. Однако правильное подчеркивание самостоятельности теории и метода должно учитывать одновременно их взаимную обусловленность и связь. Это обстоятельство находит свое подтверждение в практике научного познания.
Известно, что не любая теория исключает из своего состава предписания методологического характера. В некоторых теориях содержится описание способов ее проверки и подтверждения, способов задания граничных условий, при которых имеет смысл данная теория. Например, теория Ньютона характеризуется через указание на присущий ей тип преобразований Галилея. Она изучает лишь те свойства объектов, которые являются инвариантными при переходе от одной инерциальной системы к другой. Эти условия требуют сохранения законов классической механики, абсолютности пространства и времени при переходе от покоящейся к движущейся системе. Теория относительности Эйнштейна формулирует условия, при которых законы физики, прежде всего уравнения Максвелла, остаются инвариантными, но уже относительно преобразований Лоренца. Л понятия массы, пространства и времени, сохранявшие в теории Ньютона инвариантность, в теории относительности ее утрачивают.
Нормативные, методологические предписания занимают важное место, например, в технической теории. Специалисты отмечают, что в структуре технической теории выделяются три наиболее важных слоя: рецептурный, предметный и гуманитарный. В предметном слое фиксируются не сводимые к естественнонаучным закономерности, учитываются также такие характеристики, как затраты времени, энергии и т.д., используются представления об идеальных артефактах, т.е. искусственно созданных объектах. Гуманитарный слой отражает связь между техническими функциями проектируемых объектов и их социальным назначением и использованием. Эта сторона технической теории, имеющая весьма важное социально-практическое значение, развертывается в целом ряде особых теорий, таких как эргономика, дизайн и др. Наконец, рецептурный слой, содержание которого составляют методы, расчеты по конструированию конкретных типов технических объектов. Рецептурный слой с возникновением теории выделяется в качестве особого элемента знания, связанного с областью непосредственного практического воздействия на объектную среду. Например, из описания такого объекта, как поршневая машина двойного действия, которое строится в технической термодинамике, следует описание рекомендаций по методике ее расчета, требующее учитывать разницу в площадях поршня и давлениях двух плоскостей и т.д.
Предписания служебного методологического характера особенно важны в тех теориях, которые содержат понятия высокой степени абстрактности, логические исчисления, математические формализмы, требующие соответствующей интерпретации. Интерпретация выступает как определенным образом организованная процедура, включающая в себя выявление смысла терминов, формализмов и установление соответствия между положениями теории и эмпирическим материалом. Процедура интерпретации может иметь достаточно сложный опосредованный характер, когда неочевидные положения теории интерпретируются в терминах других теорий и только потом в терминах наблюдения или эксперимента. К служебным методологического характера предложениям теории относятся и так называемые операциональные определения, в которых интерпретируется, разъясняется значение понятий физических величин или свойств предметов, рассматриваемых данной теорией. В них содержатся указания на совокупность и последовательность операций (измерительных, экспериментальных воздействий), с помощью которых интерпретируемые значения и величины связываются с содержательной, эмпирической экспериментальной ситуацией.
Например, в теории относительности понятие одновременности определяется операционально, т.е. предполагает указание на последовательность действий наблюдателей по синхронизации часов и указание на систему отсчета, с которой связываются часы и наблюдатели.
В дальнейшем мы будем поддерживать положение, что теория представляет собой единство содержательного и методологического знания. П, Дирак писал, что теория предположительно должна состоять из некоей схемы уравнений и правил приложения и интерпретации этих уравнений. Сами по себе уравнения еще не составляют физической теории. Только тогда, когда они сопровождаются правилами, указывающими, как этими уравнениями пользоваться, мы действительно имеем физическую теорию. Здесь подчеркивается, что включение в теорию предложений методологического характера и создает необходимую основу для ее связи с методом.
Методологическое значение теории находит свое выражение не только в прямых предписаниях методологического характера, но и в методологической модальности содержательных предметных положений теории, прежде всего ее принципов и законов. Ведь любой теоретический принцип или закон кроме своей прямой и непосредственной функции отражения объективной реальности выполняет функцию методологического регулятора исследовательской деятельности, поскольку содержит неявные запреты, предписания, которым ученые в своей работе стараются следовать. Скажем, принцип постоянства скорости света в вакууме, принятый в теории относительности, накладывает определенные ограничения на анализ причинно-следственной связи между явлениями. В соответствии с этим принципом ученые должны исходить из невозможности дальнодействия, невозможности мгновенного установления связи между событиями и, значит, учитывать, что образование причинно-следственной связи ограничивается «потолком» - скоростью света в вакууме. Поэтому представление о постоянстве скорости света, невозможности передачи сигнала или другого воздействия со скоростью, превышающей световую, требует и понимания конечного характера скорости причинного действия и соответствующей трактовки вытекающих из этого следствий. Скажем, принцип постоянства скорости света запрещает принципиальную возможность установления причинной связи между любыми событиями вселенной.
Методологическое значение принципов и законов теории обнаруживается также в функции систематизации, упорядочивания научного знания. Упорядочение знания происходит как в рамках отдельно взятой теории, так и в сфере действия совокупности теорий, относящихся к той или иной предметной области. Поэтому процедура согласования знания, установление соответствия между теоретическими принципами и законами носит, прежде всего, конструктивный, методологический, а не чисто логический характер. Это требует не только установления содержательных связей между основными элементами научного знания, но и формирования методологических правил, принципов, обеспечивающих научность исследования, иначе говоря, требует единства содержательного и методологического в рамках теоретического знания.
Таким образом, методологическая функция законов и принципов теории обнаруживается как в процедуре упорядочивания знания, так и в сохранении и поддержании научного статуса исследовательской деятельности ученых, является предпосылкой единства, связи теории и метода. Методологическое значение принципов и законов используется в процессе функционирования метода, поскольку метод не может быть системой чисто функциональных, нормативных предписаний, не связанных с предметным знанием. Более того, можно утверждать, что система норм метода, т.е. правил научного исследования, как бы группируется вокруг теоретических принципов как вокруг своего рода ядра таким образом, что научный принцип образует содержательную основу и организующее начало метода. Используя теоретическое предметное знание, опираясь на него, т.е. вступая в плодотворную связь с теорией, метод обеспечивает эффективность своего функционирования в процессе научного познания. Эффективность метода, таким образом, обеспечивается, прежде всего, связью с теорией, его приспособленностью к исследованию той или иной предметной области.
Рассматривая отношения теории и метода, надо учитывать, что адекватность метода объекту обусловливается как его связями с теорией, так и характером его норм и операций. Например, надо учитывать, что универсальные нормы метода, представляющие собой всеобщие правила, условия осуществления любого мыслительного и познавательного действия и, стало быть, в наибольшей степени отдаленные от объекта, его специфики, могут опираться в своем функционировании на разные теории, сформулированные либо в одной, либо даже в разных областях научного знания. И наоборот, более узкие нормы и операции научного метода, как правило, обобщающие познавательную практику тех или иных специфических областей науки, основываются на строго определенном предметном знании.
Высокая специализированность норм и операций метода, учитывающая специфику объекта, делает их весьма эффективными в пределах дан ной предметной области, однако затрудняет применение в других областях исследования. В любом случае эффективность метода, успешное функционирование его норм и операций в ходе познания обеспечивается связями метода и теории. В ходе исследования используется наряду с собственно методологическим также и содержательное, теоретическое знание. Известно, например, что применение традиционных математически\ методов в общественных науках в силу абстрактности этих методов оказывается малоэффективным. Математизация обществознания может бы п. успешной лишь при условии создания «новой» математики, т.е. посредством образования измененных по сравнению с традиционными математических структур и приемов, которые учитывали бы специфику объектов, изучаемых в данной отрасли науки. Иными словами, успех в деле познания специфических объектов может быть достигнут лишь в том случае, если применяемые для их изучения методы будут достаточно строго соответствовать теории этих объектов, т.е. если функционирование подобных методов обеспечивается использованием соответствующего предметного знания.
Однако взаимную связь, взаимообусловленность теории и метод» нельзя трактовать как их полное тождество. Их отождествление приводы к тому, что метод определяется в качестве подтвержденной теории, примененной для получения нового знания; метод с этой точки зрения пони мается как свойство, функции теории. Такого рода некорректное отождествление производится как в философии, так и общественных и естественных науках; обычно при этом в качестве метода объявляются способности теории к экстраполяции, объяснению, предсказанию, систематизации и т.д. Действительно, возможности теории в качестве познавательного средства весьма велики. Но в этом отношении теория подобна не только методу, но и другим компонентам познания (понятиям, гипотезам, приборам, математическим формализмам и т.д.), поскольку они также исполняются в качестве познавательных средств. Но из того обстоятельства, что указанные компоненты познания схватываются одним понятием познавательного средства, вовсе не следует, что они тождественны, и в частности понятия метода и теории совпадают.
Наконец, нет нужды в отождествлении метода и теории еще и потому, что роль теории фиксируется и осмысливается методологией науки в понятиях эвристической, методологической, объяснительной, предсказательной и других ее функций. Отождествление метода и теории вызывает возражения также потому, что с этой точки зрения сложно объяснить существование предтеоретических периодов в развитии науки. История науки свидетельствует о том, что научное познание в своем развитии проходит стадию накопления эмпирического материала, которая предваряет фазу становления развитых, подтвержденных теорий в тех или иных науках. )то означает, что познание в тех условиях осуществляется, развивается на основе методов, сформировавшихся до теории. Например, предтеоретический период в истории биологии характеризуется использованием эмпирических методов, направленных на описание живых организмов, их классификацию, сравнение и т.д. Преобладающими методами биологического исследования были сравнительный метод и метод наблюдения. Разумеется, предтеоретический период развития научного познания в отсутствие подтвержденных зрелых теорий нельзя трактовать в том духе, что исследование в науке может осуществляться как чисто эмпирический, не имеющий никаких теоретических предпосылок и оснований процесс.
Надо напомнить, что основаниями осуществления научного познания и соответственно функционирования научных методов являются, во-первых, познавательный опыт, практика исследования, а во-вторых, вся совокупность предметного знания, где в отсутствие сформировавшихся теорий определяющее место занимает философия, теоретические обобщения которой образуют необходимую теоретическую базу познания. Именно такого рода философское знание образует основу нормальной работы методов, их совершенствования, основу исторического формирования научных теорий и зрелой науки. Иными словами, история научного познания подтверждает самостоятельность метода, показывает, что метод соотносится не только с теорией. Его природа и выполняемые им функции осуществляются в широком контексте научного, философского знания, познавательной практики. Как уже отмечалось, Р. Декарт не случайно в исследовании, посвященном методу, формулирует предписания метода, обосновывает его роль в соотношении со всей совокупностью знания, не выделяя специально его связи с теорией.
Проблема соотношения теории и метода была по-настоящему осознана, реально привлекла внимание исследователей на том этапе развития научного познания, в частности, его теоретического уровня, когда наука добилась теоретической самостоятельности по отношению к философии. В этой ситуации возник вопрос: необходим ли метод как средство построения самой теории, как способ получения теоретического знания, если метод сводится к функции теории. Известно, например, что аксиоматический метод построения теории не может быть ее функцией, так как процедура выдвижения исходных аксиом, их интерпретации и правила определения понятий, а также правила дедуктивного вывода конечных следствии находятся за пределами данной теории в области метатеории, методологии, логики, психологии творчества.
Выше было показано, что отношения теории и метода существуют как отношения между самостоятельными и в то же время взаимосвязанными, взаимообусловленными элементами науки, формами научного познания. Теория и метод как формы познания различаются своими функциями, ролью в процессе отражения действительности; в то же время необходимо учитывать тесную связь и взаимную обусловленность данных познавательных форм, так как отражательная и регулятивная, методологическая функции научного познания тесно связаны друг с другом. Научное познание может происходить лишь как упорядоченный, организованный процесс, а упорядоченность научного познания, его рефлексивность осмысленность являются необходимым условием осуществления отражательной функции, т.е. функции получения истинного знания.
Кроме того, рассмотрение соотношения теории и метода предполагает учет не только выполняемых ими функций, но и анализ их структуры. Мы уже говорили, что теория может содержать в своей структуре не только совокупность достоверного предметного знания, но и набор методологических предписаний, т.е. может представлять единство предметного и методологического знания. В этом отношении теория имеет общее с методом, поскольку она может содержать в своем составе совпадающее с методом по функциям знание. Общность теории и метода, таким образом, находит свое выражение в том факте, что и теория, и метод могут иметь функционально совпадающие элементы.
В то же время совпадение в определенных аспектах теории и метода не исключает их различия. При этом различия касаются не только выполняемых ими в познании функций, но и их структуры, а также содержания знания. Содержание теории составляет знание, отражающее объект, явления действительности, методологическое же знание есть отражение не объекта, а процесса научного познания, его закономерностей, а также особенностей практического осуществления. Как было показано, такого рода знание обладает достаточно сложной структурой.
В методе содержатся философские, гносеологические представления о природе научного познания, его закономерностях, образующие теоретический уровень научной рефлексии, а также методологическое знание, представляющее собой непосредственное обобщение исследовательской практики в науке, т.е. знание низшего уровня обобщения. Кроме того, знание, отражающее особенности процесса познания, дополняется собственно нормативным знанием в виде предписаний, правил исследования. Иными словами, научный метод имеет в своем составе прескриптивные высказывания, т.е. знание, принципиально отличающееся от знания предметного, теоретического. Принципиальное отличие нормативного знания от знания предметного, теоретического заключается в их разной направленности. Теория направлена на объект, представляет собой его отражение. Напротив, нормативное знание метода не несет в себе прямой информации об объекте и обращено, прежде всего, к субъекту научной деятельности и заключает в себе не описание чего-либо (будь то объект реальной действительности или процесс познания), а приказ, императив, которому должен подчиняться ученый в ходе исследования.
В отношении норм научного метода допустима аналогия, сравнение с логическими формами мышления. Логические формы возникают как результат многократного, повторения в ходе мыслительной и практической деятельности определенных действий, и поэтому они непосредственно связаны с деятельностью, являются ее обобщением и отражением. Действительность же, объективные связи и отношения вещей отражаются в логических формах опосредованно, через практику, деятельность. Аналогично нормы, правила метода формируются, прежде всего, как отражение и обобщение практики научной познавательной деятельности, в них фиксируется познавательный опыт человека. Такое отражение может быть эмпирическим в случае, когда нормы метода складываются стихийно, непосредственно в ходе познавательной деятельности. Но оно может быть также теоретическим, если предписания метода конструируются на основе философской, методологической рефлексии относительно процесса научного познания. Важно подчеркнуть, что оба способа формирования методологического знания связаны с реальным процессом научного познания, с его осмыслением, вытекают из практики его осуществления. Вообще говоря, любые нормы, не только нормы метода, являются закреплением деятельности, так сказать, манифестацией ее упорядочивающей, организующей стороны. Нормативное знание только опосредованно связано с фактуальным, содержащим информацию (истинную или ложную) об объекте, поэтому характеристика норм с точки зрения оппозиции «истина-ложь», применимая к объекту и его свойствам, особенностям, должна быть заме иена дихотомией «правильно-неправильно», имеющей силу непосредственно в рамках деятельности.
С этой точки зрения попытка проследить переход от фактуального, предметного знания к нормативному без учета практики осуществлении деятельности как опосредующего звена вызывает возражения. Другое дело, что методологическое знание, включая нормы, предписания, нельзя отрывать от предметного знания, поскольку знание предписывающее, прескриптивное, в конечном счете, основывается на знании дескриптивном. Кроме того, специфичность методологического знания проявляется н тесной связи и взаимной обусловленности норм и оценок, должного и ценностного. Эта связь, как подчеркивает А.А. Ивин, самым наглядным образом обнаруживается в том, что сами нормы представляют собой частный случай ценностного отношения, частный случай оценок. Нормы метода, будучи важным элементом системы методологического знания, служат основанием для оценки той или иной познавательной операции, действия или результата.
Одновременно сама норма может оцениваться с позиций общефилософских, общегносеологических и методологических представлений, концепций научного познания. Переплетение ценностного и должного, когнитивного и деятельностно-практического, субъективного и объективного в методе, его нормах делает возможным связь метода с социокультурными условиями научной деятельности. Тем самым научный метод получает основания для своего функционирования не только в познавательной, но и социальной, культурной сферах.
Правильное рассмотрение соотношения теории и метода невозможно также без учета того обстоятельства, что метод представляет собой не только систему знания, но и систему действий. Надо иметь в виду, что регулирование научной деятельности осуществляется методом практически, путем непосредственного практического осуществления соответствующих познавательных действий, процедур в процессе исследования. Эти действия основываются как на предметном, теоретическом знании, так и на знании методологическом, содержащем осмысление, философское, теоретическое отражение процесса научного познания, а также совокупность правил, норм, непосредственно предписывающих стратегию и тактику научного поиска и предполагающих субъективно-личностное их осмысление и умение. При этом регуляция научного познания осуществляется методом как на уровне отдельно взятого индивидуального исследования, так н на надындивидуальном уровне познания.
В последнем случае, как уже было показано, метод представляет собой типичный способ, каким наука получает новое знание. Уже простое перечисление познавательных шагов метода данного уровня: формулировка проблемы, построение теорий, проверка теорий наблюдением или экспериментом, формулировка новой проблемы делает очевидной невозможность отождествления теории и метода. Состав метода богаче теории, ее состава, поскольку кроме знания включает в себя определенным образом организованную систему, последовательность познавательных действий, причем не только мыслительных, но и практически-предметных, экспериментальных. Поэтому очевидно, что связь компонентов системы метода в отличие от системы теории не может быть чисто логической. Да н сам характер компонентов, познавательных операций, исследовательских шагов метода не дает никаких оснований для его отождествления с теорией.
Разумеется, среди совокупности познавательных шагов научного метода процедуры, связанные с построением теории, имеют особенное значение вследствие чрезвычайной важности теории в научном познании. Именно в этой связи научный метод, как правило, сравнивают с теорией. Если сравнивать с теорией метод в форме познавательного цикла индивидуального уровня научного познания, о котором речь уже шла, то и в этом случае нет никаких оснований для их отождествления. На данном уровне познания метод также представляет собой совокупность познавательных шагов, в составе которой имеются мыслительные, знаковые, предметные (экспериментальные) действия.
Количество и последовательность познавательных шагов, операции может быть самой разнообразной в зависимости от целей того или иного конкретного исследования. Ясно, однако, что и в данном случае подменять метод теорией было бы некорректно. Другое дело, что и на этом уровне познания теоретическое предметное знание выступает важнейшим условием функционирования научного метода, предпосылкой осуществления познавательного цикла, входящих в него действий, операций. Известно, например, что даже предметные экспериментальные познавательные действия могут быть осуществлены только на основе той или иной теории. Но это не означает, что данные действия и есть теория.
11. НАУЧНЫЕ ТРАДИЦИИ
Наука представляет собой особую область культурного пространства и поприща. Традиции - одна из главных тенденций разработки и развития этого поприща.
Традиции в науке, как и в других областях культуры, представляют определенное наследие, переходящее из прошлого в настоящее и будущее. Научное наследие охватывает широкий круг явлений и элементов. В их числе стоит упомянуть издавна сохраняющуюся традицию публичного испытания подготовленных людей к приему в научное сообщество. Такая процедура предполагает проведение открытых научных диспутов и докладов в присутствии авторитетных ученых, а также свободной публики. Признание определенных заслуг соискателя оценивается присвоением ученой степени.
Среди ученых принято присвоение различных почетных званий, присуждение медалей и других знаков отличия за выдающиеся труды в области науки. Высшим признанием в современной науке пользуется Нобелевская премия, которая присуждается с 1901 г. ежегодно за выдающиеся работы в области физики, химии, медицины и физиологии, экономики с 1969 г..
Уже столетия сохраняется традиция университетского поприща науки. Ее своеобразие состоит в том, что в университетах реализуется принцип единства науки и образования. В университетах работают преподаватели, которые одновременно являются учеными-исследователями. Среди них немало таких, которые занимают передовые позиции в конкретных областях науки, а добываемые ими знания входят в структуру учебного процесса.
Длительное время существует также традиция академического статуса науки. Возникнув несколько столетий назад (во Франции), академии стали ведущими научными учреждениями во многих странах мира. В России академия создана в XVIII в. Она ведет свое начало с Указа Петра I и с постановления Сената, в коих были четко определены ее структура, назначение, источники содержания. Образцом для создания высшего российского научного учреждения явилась Парижская академия наук. Показательно, что она в 1717 г. избрала Петра I своим членом.
Более 300 лет академия наук в России представляет собой высший профессиональный союз ученых, который завоевал высокий международный авторитет. В ней уже в первые годы существования работали крупнейшие зарубежные ученые: Н. Бернулли, Л. Эйлер, Г. Миллер и др. В Петербургской академии сложились и продолжают действовать авторитетнейшие научные школы, например, математическая школа, которая выдерживает высокий стандарт на протяжении столетий. В деятельности самой Российской академии сложились яркие традиции. Одной из них стала связь фундаментальных исследований с крупномасштабными практическими проектами. К примеру, уже в XVIII в. изучались природные ресурсы страны, составлялась точная генеральная карта России. В XIX в. силами академии было учреждено Минералогическое общество, Русское географическое общество. В 1915 г. при академии организуется Комиссия по изучению естественных производительных сил России. Позже, уже в советское время, созданы физико-технический институт, вычислительный институт и др. В послевоенное время возникли институт химии силикатов, институт высокомолекулярных соединений, институт океанологии, институт транспорта, институт мозга, центр экологической безопасности и пр.
Надо видеть, что новые научные успехи закладываются в фундаментальных идеях и делах прошлого, покоятся на принципах научного сообщества, проявившего свою творческую силу. Важны, конечно, и плодотворные способы организации науки, и личные усилия ее подвижников. Традиции, о которых .здесь говорится, помогают сохранить саму науку, что особенно важно для современной России, когда значительные пласты науки просто разрушаются.
Существование традиций в науке связано с преемственностью в развитии этой области культуры. Обеспечивается преемственность благодаря сложившимся механизмам передачи опыта в системе научной деятельности. Имеется в виду не только передача социального опыта, что чрезвычайно важно, но еще и опыта когнитивного, т.е. накопленных знаний, проблем, методов их решения и т.д. Сами ученые совершенно обоснованно говорят о том, что научные знания не рождаются на пустом месте. Новые научные теории не отбрасывают полностью содержание старых, ибо последние в пределах своей компетенции, подтвержденной эмпирически и теоретически, были верной моделью определенного фрагмента действительного мира. Более поздние этапы развития научного знания не сводят к нулю значение более ранних знаний, но указывают на границы их применимости.
Полезно учитывать два аспекта традиции: их глубину и широту. Глубокие традиции укоренены в давних пластах исторического времени. И проявление подобных традиций свидетельствует об исторической устойчивости соответствующей сферы культуры.
Есть ли в науке глубинные традиции? Конечно, есть, поскольку наука пришла в наше время из древних обществ. Она устойчиво занимает одну из ниш культуры, обеспечивает получение некоторого востребованного типа знаний, сохраняет возможности рационального постижения действительности. Широта и масштабы традиционализма в науке связаны с расширением диапазона влияния науки на другие формы культуры. Этому способствуют ее собственные ресурсы: расширение диапазона знаний, дифференциация ее предметных областей, разработка новых методологических подходов. Традиция в такой ситуации превращается в тенденцию развития, охватывающую все большее число научных направлений.
Традиция сохраняет науку благодаря передаче накопленного наследия: знаний, опыта, методов, способов организации научного сообщества, норм поведения ученых, материальных ресурсов и пр.
Философское содержание понятия «традиция» фиксируется категорией «преемственность». Следует различать стихийную преемственность и управляемую преемственность. В области стихийной преемственности наблюдаются серьезные потери, обедняющие науку. К таковым относятся кадровые потери, утрата знаний, разрушение информационных фондов науки, распадение эффективных структур научной деятельности. Управляемая преемственность выступает формой искусственной селекции. Она предполагает создание целевой организации по сохранению научного наследия. В отдельных ячейках науки такая организация может быть весьма эффективной. Расширение же ее на всю развивающуюся науку представляется маловероятным, поскольку элемент стихийности в развитии реальной науки вряд ли может быть исключен полностью. В перспективе возможна лишь вероятностная система, способная к компенсации отдельных компонентов всеобщего «социального тела науки».
Традициям устоять в современном обществе непросто. Мы живем в бурные времена, когда непрерывно происходят общественные преобразования. В таких условиях востребована динамичная, способная к обновлению наука. По словам В.И. Вернадского, XX век стал эпохой научного взрыва. Она вместила в себя серию научных революций, связанных с отрицанием крупных массивов научных знаний, с преобразованием методов и методологических подходов к изучаемым объектам. Однако подобный взрыв и революции не уничтожают прошлое науки, которая продолжает вести свою историю. Что же в этом бурном потоке сохраняется и продолжается? Какие фундаментальные блоки науки выдерживают исторические испытания и могут давать собственный импульс прогрессу науки? Как связаны традиции и новации в современной науке?
Поиск ответов на поставленные вопросы часто соотносят с идеей научных парадигм, предложенной Т. Куном. Согласно Т. Куну, парадигма -это историко-социальная характеристика науки. Она обнаруживается вовсе не в сфере рациональной реконструкции науки, т.е. не благодаря рациональному моделированию изменяющегося научного знания, а путем погружения в ход ее истории, которая не сводится к «чистому» движению знания, но обладает чертами человеческой борьбы, в ней сталкиваются интересы разных поколений ученых. Такая история описывается как динамика научных сообществ, которые и определяют значимость и перспективы использования знаний внутри сферы науки.
Парадигма суть надстройка над «рабочим» знанием и методами. Она регулирует деятельность ученых, по преимуществу, как особая ценность. Принятие или отвержение парадигмы ведет к расслоению научного сообщества. «Масса» деятелей науки использует накопленное знание для решения множества задач по стандарту. В этом случае получается своего рода гарантированный знаниевый продукт. Но меньшая часть ученых работает в некоторой пограничной зоне в отношении признаваемой сообществом парадигмы. А уже совсем немногие способны уходить в область «аномальной» науки. Здесь только и ожидаются фундаментальные новации, подлинные исторические сдвиги в развитии науки. Со временем это новое знание способно вытеснить старую парадигму и занять ее место.
По Куну, смена парадигм обозначает рубежи переломов в научных традициях. Им обнаружен нелинейный характер эволюции научного знания. Выработанные под воздействием различных парадигм знания обнаруживают несоответствие друг с другом. Новые теории фундаментального характера не выводятся непосредственно из прежних пластов знания.
А. Никифоров приводит в этой связи убедительный факт несоответствии между классической и релятивистской механикой.
Получается, что в истории науки нет простой преемственности знаний. После работ Куна меняется смысл так называемой научной традиции Кумулятивное непрерывное накопление научных знаний теперь нельзя считать эталоном традиции. Философы науки признали, что исторически» традиция в науке - это изменчивое явление. Кроме того, она несет в себе перспективный потенциал и имеет силу для вытеснения старой традиции.
Принимая указанную концепцию, современная философия науки вы ходит за пределы эмпирической методологии в объяснении роста научного знания. Рост науки - это не обязательно распространение новых теории на более широкий массив фактов. Иначе мы не сможем преодолеть «наивный комулятивизм» (выражение А. Никифорова) в трактовке эволюции науки.
Итак, концепция Т. Куна помогает выработать весьма емкую позицию в трактовке научного прогресса, рассматривая таковой в контексте социально-исторических процессов. В наше время эта позиция стала весьма востребованной. Тем не менее, подход, разработанный Т. Куном, использует ограниченный образ науки, и концепция парадигмальных поворотов освещает узкий спектр научных преобразований, связывая их с деятельностью носителей старого и нового знания в сообществе ученых.
Нам представляется, что можно и необходимо рассматривать соотношение традиций и новаций в науке с использованием культурологического подхода. Он предполагает комплексную трактовку научного прогресса, исследование взаимодействия ряда фундаментальных элементов, обеспечивающих и расширение, и воспроизводство условий рост науки. Среди таких блоков назовем следующие: 1) организационные структуры науки; 2) дисциплинарное и междисциплинарное строение науки; 3) методологический арсенал науки и научная картина мира: 4) практико-эмпирический базис науки.
Преемственность и традиции в развитии научных знаний реализуются через своеобразный механизм информационного отбора. Уловив этот момент, некоторые философы науки (в частности, К. Поппер) ведут речь об определенном совпадении между эволюцией научных знаний и биологической эволюцией. Конечно, прямая аналогия здесь вряд ли оправдана Скорее, в данном случае мы имеем дело с условной метафорой. Хотя надо признать, что на каком-то шаге глобального развития биологической информационной эволюции она могла трансформироваться в информационные культурные программы эволюции, а те, в свою очередь, создали матрицы наукоемкой сознательной эволюции. В этом свете естественным является тот путь научной эволюции, который связан с сохранением максимальной научной информации, заключенной в теориях и методах науки. Ее емкость растет благодаря теоретическому разнообразию знания, расширению поля научных исследований. А, в конечном счете, она сводится к культурному разнообразию, представленному в формах существования науки и научной деятельности.
В данном направлении действует также процесс дифференциации научных знаний, ветвление и рост самостоятельных научных дисциплин. В этом же плане срабатывает отпочкование от естествознания обширной и далее растущей сферы научного техникознания. Дополнительную ценность для формирования информационной устойчивости науки приобрели социальные и гуманитарные ветви научного исследования.
Устойчивость, а значит и преемственность в развитии науки, проявляются в значительной мере через деятельность ее субъектов. Многообразие субъектов научной деятельности расширяет диапазон научных поисков, обогащает объем научной информации, усиливает возможности обмена информацией. Уже наука нового времени дала импульс к резкому увеличению числа участников научного процесса и качественному различию среди них. Наряду с университетами, пришедшими еще от средних веков, появились научные академии, научные общества, научные лаборатории, а с конца XIX века возникли научно-исследовательские институты. В XX веке к этому комплексу добавилась обширная инфраструктура, включившая опытное научное производство, научно-финансовые фонды, научные клубы и информационно-сервисные структуры типа ВИНИТИ или ИНИОН РАН.
Вокруг подобных субъектов складывается деятельность, дифференцированная по темам и проблемам, по дисциплинарному или отраслевому принципу, по региональным задачам и т.д. Их становление и развитие свидетельствует о превращении науки в массовое движение, а вместе с тем - в устойчивый социум. Одним из его интересов является поддержание жизни научного сообщества в качестве особой социальной традиции.
Надо заметить, что массовая деятельность в науке не исключает, а, напротив, предполагает наличие лидеров, способных вносить крупный вклад в научное познание. Вокруг ученого-лидера, ставшего создателем новой научной идеи и программы, объединяются последователи и ученики. Иногда это формально скрепленная группа исследователей, но нередко возникает так называемый «невидимый колледж». Тогда появляется оригинальный субъект научной деятельности в виде научной школы. У каждой школы есть своя приверженность к разработке определенной научной проблематики, которая может проявляться на протяжении многих лет. С этим связана особая традиция научной школы. Показательно, что и в данном случае мы имеем дело с традицией некумулятивного характера. Она может прерываться, поскольку школы участвуют в конкурентной борьбе научных идей. И успехи смежной школы иногда способны свести на нет идею и программу данной конкретной научной школы. Так произошло, например, в современной космологии, когда идея Большого взрыва стала тесниться идеями инфляционных процессов. Аналогичная ситуация возникла в физике микромира, когда идея кварков оказалась теснимой идеей струн.
Конечно, новые знания вызывают в науке своеобразный резонанс, отклик, содержанием которого является более или менее длительное обсуждение достоинств и недостатков старой теории, происходит переосмысление старых понятий и методов с неожиданной подчас точки зрения, задаваемой новой теорией. Это обстоятельство связано с тем, что наука остается весьма консервативной, поскольку не принимает безоговорочно и разом новые знания, сохраняя во многом приверженность старым научным идеям и теориям. Часто в течение длительного времени новое и старое знание сосуществуют рядом, то дополняя друг друга, то стимулируя экспансию в соседние области теоретических знаний и фактов. Старое научное знание (система понятий, теорий) может быть обобщено новым знанием, а может выделиться в самостоятельную область науки, давая точку роста для новых ветвей научного прогресса. В первом случае возникают более емкие научные теории, как, например, теория относительности в сравнении с ньютоновской механикой. А в другом - появляются пограничные области исследования типа физической химии, биофизики, биохимии и т.п.
Сказанное подтверждает, что верность традициям, сохранение оправдавших себя форм организации науки, элементов или основ ранее добытых знаний не могут быть препятствием для общего прогресса науки, для введения в ее состав различных новшеств, для перестройки системы научных знаний, для очистительной работы и избавления оттого, что тормозит ее прогресс. Один из главных смыслов научной деятельности - это движение вперед, к новым горизонтам познания, к новым формам взаимодействия науки и практики. В науке вырабатываются и уточняются фундаментальные понятия, осуществляется критика общепринятых идей, формулируются новые, в том числе - созданные впервые принципы и теории, идет борьба за первенство и приоритет среди различных школ и среди отдельных ученых, отстаивающих свой личный вклад в науку. И в прошлом, и сейчас можно видеть, что создатели науки культивировали и продолжают внедрять действенные традиции, принятие которых не останавливает научное творчество, а содействует росту научного знания и его обновлению.
В наше время уже хорошо осознается, что наука приобрела устойчивый признак инновационной деятельности. Соответственно о научном познании правомерно говорить как о процессе, обеспечивающем возникновение нового знания. Но одновременно в науке рождается инновационная методология, а также формируются специфические способы организации науки, стимулирующие инновационную направленность работы ученых-исследователей.
Новации, о которых в данном случае идет речь, имеют бытийный характер. Они преобразуют мир науки, которая проявляет себя как область реального созидания. Ее новшества - это не продукт какой-то забавы или полудетской игры. Созидательный процесс в науке конструктивен и необратим. Он ведет к существенным переменам в субъекте научной деятельности. Каждое новое поколение ученых и мыслит, и действует иначе, нежели прежние поколения, оно по-другому строит отношения внутри науки, а также стремится новаторски формировать связи науки с ее культурным окружением (в том числе с промышленностью, образованием, военным делом и т.д.).
Вместе с тем шаг за шагом, от этапа к этапу меняются средства научной познавательной деятельности; и такие перемены отражаются на состоянии науки в целом. Показательно, что становление современной науки в эпоху нового времени началось с преобразования ее методологической основы (был разработан экспериментальный метод познания, выявлена важная роль в науке индуктивных методов, восстановлен в правах дедуктивно-аксиоматический метод построения научных знаний). Стоит, однако, отметить еще одно обстоятельство. С этой эпохи начинается подлинный поход науки за открытиями. И этому способствовали многие новые средства, вошедшие в структуру научной деятельности. К ним относятся экспедиции и путешествия, спектр которых неуклонно расширялся, включая уже в наши дни космические путешествия. Новыми средствами познания явились различные приборы и инструменты, установки и оборудование, с помощью которых расширяются и углубляются предметные области исследования современной науки.
Уже ранние шаги современной науки оказались связаны с созданием неизвестных ранее инструментов. К ним относятся телескоп (изобретен и усовершенствован Галилеем) и микроскоп (появился в конце XVII в.). Использовались также часы, приборы для вычисления долготы и широты. Была применена призма для разложения света.
Свой вклад в разработку инструментов научного познания внесла математика (были созданы логарифмические методы вычисления, вариационное исчисление, методы решения математических уравнений, методы исчисления вероятностей, теория функций вещественного переменного и пр.).
Во все последующие эпохи новая инструментально-приборная база стала систематически использоваться для обоснования крупных научных открытий. Можно в этой связи указать на разработанные Фарадеем средства исследования электромагнитной индукции, на применение спектрального анализа (Бунзен, Кирхгоф). Оригинальная исследовательская техника использовалась для доказательства существования электромагнитных волн. Новое лабораторное оборудование потребовалось для доказательства существования рентгеновских лучей, для подтверждения явления радиоактивности. Во многих областях науки важную роль сыграло создание высокоточных оптических приборов для спектроскопических и метрологических исследований (Майкельсон).
Опять же надо упомянуть достижения математики, которая предлагает оригинальные инструменты решения возникающих в науке задач. Так, в физике XX столетия многие принципиальные вопросы получили свое рациональное освещение лишь благодаря новым математическим инструментам исследования. В первую очередь это касается разработки современных представлений о природе пространства-времени. Переломным моментом стало предложенное X. Лоренцем математическое описание трансформационных свойств физического мира Оно известно как «преобразования Лоренца» и включает в свой состав совокупность формул, с помощью которых можно пересчитывать координаты событий, наблюдаемых в одной системе отсчета, на координаты этих же самых событий, определяемых в другой системе отсчета. Итогом соответствующих преобразований стало новое правило сложения скоростей (в сравнении с правилом Галилея), которое можно найти в любом современном учебнике физики. А. Эйнштейн предложил считать преобразование Лоренца фундаментальным законом природы. Из последнего были выведены важные следствия, определяемые как эффект сокращения длины движущегося объекта и эффект замедления времени для движущихся часов в сравнении с покоящимися. Оба эффекта нашли подтверждение в различных экспериментах. В частности, в экспериментах по изучению быстро движущихся пионов было доказано, что «внутренние» часы пионов идут намного медленнее, если на них смотреть из лаборатории, размещенной в конце испытательного туннеля.
Современная физика разрабатывает плодотворные математические описания для решения многих фундаментальных исследовательских задач. Среди мощных математических инструментов стоит упомянуть разработку волнового уравнения Э. Шредингера, приспособленного для описания необычного движения электрона. В нем использовано понятие «волновая функция», которая предполагает распределенную в пространстве плотность вероятности нахождения частицы в пространстве-времени (в элементе некоторого объема). Волновая функция стала полезным инструментом, средством количественного исследования микрофизических явлений Она приспособлена для описания в рамках квантовой механики движения свободной частицы с полной энергией Е и импульсом р. Хорошим объектом применения для теории и уравнения Шредингера стала идеальная модель атома водорода.
Средства познания, применяемые в современной науке, в особенности в ее естественнонаучных областях, существенным образом связаны с процессом технизации науки. От развертывания такого процесса зависит новаторский итог развития научного познания в наше время. Показательно в данном отношении формирование новейшей атомной физики и физики атомного ядра. Конечно, лидирующее положение этой области науки сложилось за счет усилий и теоретиков, и экспериментаторов. Но получение фактического материала, стимулировавшего продвижение теоретической мысли, равно как и проверка теоретических выкладок с помощью экспериментов опирались на развитую техническую базу. Ее создание само требовало новаторских подходов и решений.
В этой области новое рождается в тесном союзе ученых и инженеров, а инженерия, в свою очередь, вовлекает в решение научных задач определенные промышленные области, которые зачастую возникают в качестве уникальных экспериментальных разработок.
Крупным рубежом, обозначившим указанную ситуацию, стало открытие в науке явления радиоактивности (самопроизвольное деление ядер химических элементов, в результате чего идет превращение одних элементов в другие). Для изучения радиоактивности создаются специфические установки. Кроме того, добыча радиоактивных веществ потребовала переработки больших масс природных веществ, что заставило искать и вне в эту область деятельности сложные технологии. Создается также новая техника и технология для изучения искусственной радиоактивности.
Так, в экспериментах, проведенных Э. Ферми и Э. Сегре в 1934 г., осуществлялась бомбардировка нейтронами ядер урана. Облученный уран проявлял при этом искусственную радиоактивность, его ядро распадалось на два ядра примерно одинаковой массы. Выяснилось также, что ядра-фрагменты имеют избыточное число нейтронов и потому оказываются и значительной степени нестабильными, сами испускают часть нейтроном. Было установлено также, что при реакции деления урана выделяете* очень большое количество энергии.
В итоге была показана возможность цепной реакции деления с высвобождением громадного количества энергии. Под руководством Э. Ферми и 1942 г. в Чикагском университете был построен «атомный котел», в кото ром впервые осуществлена самоподдерживающаяся цепная ядерная реакция. Техническая мысль вместе с учеными продвинулась далее к созданию разных типов реакторов, среди которых более эффективными оказались реакторы-размножители, использующие быстрые нейтроны. Их конструируют так, чтобы в течение нескольких лет реактор-размножитель удваивал исходное количество радиоактивного топлива, заложенного в него вначале.
Для изучения структуры атомов и выяснения особенностей взаимодействия атомных частиц были предложены разнообразные высоковольтные электростатические машины, смысл действия которых - создание электрически заряженных ионов и придание им большой скорости движения в соответствующем электрическом поле, что обеспечивало бомбардировку атомов разных веществ, позволяло экспериментально наблюдать ядерные реакции. Первое высокое напряжение, создающее поток ионов е энергией свыше 1 МэВ, было достигнуто на генераторе Ван-де-Граафа и Вашингтоне. Параллельным путем шло создание нового типа машин циклотронов, бетатронов, линейных ускорителей, синхрофазотронов. В настоящее время работают ускорители, которые могут разгонять протоны до энергий свыше 1000 ГэВ. Исследования на подобных установках привели к открытию новых химических элементов, которые не наблюдаются в естественных условиях Земли.
Сказанное позволяет сделать вывод о существовании своеобразных зон новизны в современной науке. Возникая в определенное время и при определенных условиях, они обеспечивают поворот науки к решению принципиально новых задач. Причем формулировка таких задач требует оригинального научно-теоретического подхода, а вместе с тем - высокой изобретательности в экспериментальной области и существенного продвижения в промышленно-техническом направлении. Радиоактивность и достижения ядерной физики вошли составными элементами в одну из подобных зон новизны.
Следует также выделить физику твердого тела и работы по исследованию полупроводников. На их базе сформировался узел развития, который позволил современной науке выйти в принципиально новую область деятельности по созданию электронной техники, и решению задач кибернетизации общества. Данное направление работ впитало в себя достижения вычислительной математики, использует потенциал математической логики, теории информации. С ним связана современная цифровая революция. Но есть и более широкие горизонты: практически все современные системы связи, включая высокоскоростной Интернет, мобильную телефонию, кабельное телевидение, оптоволоконную связь, возникли и развиваются, как подчеркивает Ж. Алферов, на основе полупроводниковой техники и технологий. Оптоэлектроника, СВЧ-техника, космическая энергетика также немыслимы без использования новейших достижений в области полупроводниковых гетероструктур.
Инновационная направленность науки, безусловно, поддерживается притоком творческой талантливой молодежи, способной в относительно короткий срок получить эффективную теоретическую, методологическую и организационно-управленческую подготовку. При этом важно, чтобы таланты оказались причастны к разработке проектов, имеющих прикладное и фундаментальное значение здесь, у нас, т.е. в России. Моральное и материальное поощрение их работы обязано входить в число приоритетов современной молодежной политики.
Сегодня понятно, что инновационная отдача науки зависит от экономических условий, в которых она существует. В том числе речь идет об источниках финансирования научной работы. Нобелевский лауреат Ж. Алферов подчеркивает, что знания как научный продукт не могут быть в полной мере товаром частно-капиталистического рынка. И потому, как полагают многие современные ученые, фундаментальная наука должна получать государственную поддержку в виде заказов на разработку передовых направлений, обозначившихся в современной науке.
Понятно и то, что наука останавливается в своем развитии, если не имеет выхода в технологии, в производство, в решение крупных социальных проблем (в медицину, образование и пр.). Стопор возникает, если рвется связь науки с практикой. И дело здесь не в частностях, например, в отсутствии личной инициативы ученых. Действительно весомым, по мнению Ж. Алферова, является сбой, возникающий на уровне научно-технической политики, в выстраивании общегосударственных приоритетов. Востребованность науки поддерживается не рекламой ее отдельных достижений, а развертыванием стратегии в государственном масштабе в сфере создания наукоемкого производства, наукоемкой экономики.
12. НАУЧНОЕ ТВОРЧЕСТВО
Упрощая содержание понятия «творчество», о нем часто говорят как о процессе создания нового, т.е. того, чего не было ранее, а также как о процедуре открытия неизвестного, новой информации, знания, идей, фактов и т.д. Такая трактовка позволяет применять данное понятие для характеристики самых разных процессов развития, которое как раз и сопровождается порождением нового; в этой связи можно говорить, например, о творчестве как свойстве процессов эволюции неживой и живой природы, поскольку такие процессы приводят к возникновению новых форм неживой материи, а также новых видов живых организмов. Еще один уровень творчества связан с человеком, его деятельностью, культурой, поскольку способ человеческого бытия состоит как в репродукции уже достигнутых форм, результатов, так и в созидании нового, служащего основой дальнейшего совершенствования культуры и общества. Иными словами, понятие творчества напрямую связано с понятием деятельности; деятельность представляет всегда нераздельное единство творческих, продуктивных, и нетворческих, репродуктивных сторон, поскольку она осуществляется и как репродукция, т.е. воспроизведение накопленного опыта, воспроизведение известных, устоявшихся форм, логики, и как творческое порождение на основе наличного, существующего нового, новых форм и результатов. Это означает, что любые виды человеческой деятельности, например, научная, педагогическая, художественная, религиозная и т.д., состоят из творческих и нетворческих сторон, включают в себя как творческие, так и нетворческие элементы.
Творческий продуктивный процесс отличается от репродуктивного тем, что в результате него всегда получается, как было сказано, принципиально новое (новая материальная структура, новая идея, метод, результат в человеческой деятельности и т.д.), репродуктивная же деятельность есть всегда повторение, воспроизведение уже имевшего место, старого. Однако это не означает, что репродуктивная сторона деятельности не нужна или является абсолютной помехой творчеству и деятельности. В определенном смысле данная сторона выражает консерватизм, инерцию мысли и действия, которые сдерживают нововведения, но в то же время воспроизведение старого, полученных и уже проверенных результатов, методов и т.д., т.е. репродукция апробированного знания, методов является необходимым условием, обязательной предпосылкой творчества и соответственно дальнейшего успешного развития деятельности, поскольку новое не может возникнуть из ничего, творчество не осуществляется на пустом месте. Процесс можно назвать творческим также в том случае, если решается некоторая проблема, затруднение, которое может возникнуть в любом виде человеческой деятельности, в том числе и научной.
Таким образом, творчество предполагает решение назревших проблем, требует конструирования новых методов для обеспечения дальнейшего развития того или иного вида деятельности: научной, художественной, трудовой и т.д. Еще одна особенность творчества: механизм творчества, способ получения нового остается неосознаваемым, неконтролируемым в ходе его осуществления. Иными словами, специфика творчества состоит в том, что фокус внимания направлен не на процесс решения проблемы, а на саму проблему, поэтому механизмы творчества не осознаются и не контролируются человеком как субъектом творчества. Наконец, поскольку человеческая деятельность представляет собой сложную систему, включающую определенную совокупность связанных между собой элементов, предполагающую нераздельное единство продуктивной и репродуктивной сторон, взаимодействующую с большим количеством разнообразных факторов, составляющих условия деятельности, постольку процессы творчества, испытывающие многообразные влияния в системе деятельности, носят комплексный, многомерный характер, не поддаются объяснению посредством только одной или даже нескольких причин.
Особое место среди факторов, влияющих на творческие процессы, в том числе и в рамках научной деятельности, занимают логические средства исследования, формальная логика, а также научный метод. В частности, формальная логика, являясь стержнем мышления, рациональной основой познания, в то же время в большей мере относится не к творческой, продуктивной, а к репродуктивной стороне научной деятельности, поскольку принципиально новая идея, новое знание невыводимо чисто формально-логическим образом, на основе одних лишь законов логики из наличного знания.
В этом смысле наиболее специфична дедукция; дедуктивный вывод является алгоритмическим, т.е. таким, который может быть осуществлен вычислительной машиной. Машиноподобность дедуктивного вывода обусловливается не только тем обстоятельством, что связь исходных положений и получаемых в результате дедукции следствий носит строго аподиктический, однозначный характер, но и тем, что, как в свое время утверждал И. Кант, знание, полученное в следствии, неявно содержится в посылке, т.е. дедуктивные высказывания являются аналитическими, не дающими приращения нового знания; дедукция лишь раскрывает, эксплицирует ту информацию, которая уже имеется в исходных понятиях и суждениях, но не прибавляет к ней нового знания.
Разумеется, осуществление самой дедукции, самого дедуктивного вывода требует от субъекта познания творчества, интуиции, т.е. дедукции надо учиться, осваивать ее правила и т.д., но знание дедукции, применение дедуктивного рассуждения в научном или другом познании для творческих процессов порождения действительно нового знания носит лишь вспомогательный характер. Индуктивная логика в сравнении с дедуктивной в большей степени обладает поисковым, эвристическим характером, достаточно широко используется в творческих процессах порождения нового знания. Индукция не доказывает истину, новое знание, не выводит его по правилам логики из наличного знания, но помогает искать его, выполняя важную эвристическую роль; при этом индуктивный вывод носит принципиально вероятностный характер, что приводит к изменению следствий при изменении исходных данных, на которых данный вывод базировался.
Иными словами, применение индукции в творческих процессах также имеет определенные ограничения, поэтому не подтверждается позиция Ф. Бэкона, согласно которой индукция представляет собой истинный, абсолютный метод, позволяющий делать научные открытия любому даже не очень талантливому ученому. Он писал: «Наш же путь открытия наук немногое оставляет остроте и силе дарования, но почти уравнивает их. Подобно тому как для проведения прямой или описания совершенного круга много значат твердость, умелость и испытанность руки, если действовать только рукой, - мало или совсем ничего не значит, если пользоваться циркулем и линейкой. Так обстоит и с нашим методом». В целом анализ проблемы творчества, порождения нового знания выходит за рамки чисто логического подхода; необходимо учитывать не только формальнологические, но и методологические, психологические, культурные и прочие содержательные аспекты, играющие в творческих процессах определяющую роль. В частности, применение в эвристических целях логических средств дедукции и индукции требует обязательного привлечения внелогических, т.е. содержательных факторов интуиции, опыта, умения и т.д. Так, большое значение имеет методологическая сторона научной деятельности, научного творчества, связанная с ролью метода в процессах порождения нового знания.
Значимость методов, методологической деятельности была отчетливо осознана философами и учеными в самом начале истории научного познания. Начиная с Платона, ими обосновывалась мысль о том, что для разграничения знания и мнения и соответственно успешного движения к истине необходимо употребление соответствующих познавательных и логических процедур, т.е. определенного метода. Особенно полно представление о методе как необходимом условии познания, научного творчества, главном средстве получения нового знание было развито в Новое время. Достаточно вспомнить Ф. Бэкона, Р. Декарта, Г. Галилея, Г. Лейбница, в работах которых проблемы метода занимают весьма важное место.
Убежденность в высокой ценности метода как эффективного эвристического средства сохраняется и в настоящее время; сильные позиции в философии занимает мысль о том, что развитие науки и культуры осуществлялось в прошлом и осуществляется теперь не за счет совершенствования творческих способностей ученых, а посредством изобретения и совершенствования научных методов. Такая убежденность имеет определенную объективную почву, основывается на особенностях, закономерностях научного познания. Научное познание осуществляется в единстве содержательной и методологической деятельности, предметного и управляющего, методологического уровней. Изучение объекта в той или иной мере связано с исследованием самого научного познания, осмыслением его закономерностей, конструированием познавательных форм и средств, управлением процессом исследования. Причем содержание и значимость проблем и задач методологической деятельности меняется в ходе исторического развития науки. Так, повышение внимания к проблемам методологии происходит в эпохи революций, смены стилей и парадигм научного мышления, а также в периоды, связанные с определенными трудностями в развитии науки: обнаружением противоречий в фундаменте основополагающих теорий, неожиданными, не предсказанными наличными теориями открытиями, не вписывающимися в систему известного знания, усложнением структуры исследования, его средств, увеличением материальных, финансовых затрат и т.д.
Современный этап научного развития характеризуется повышением удельного веса и роли методологической составляющей в науке, т.е. методологизацией науки. Отмечается быстрый рост методологического управляющего уровня, усложнение его структуры; можно сказать, происходит формирование методологии как особой дисциплины. Иными словами, в целом вместе с историческим развитием научного познания происходит возрастание значимости методологической деятельности. С другой стороны, практика научного познания показывает, что метод не является абсолютной гарантией успеха, что ученый, даже если он и использует хороший метод, не всегда может получить действительно новые, ценные результаты. В связи с этим среди философов и ученых появилось представление о том, что метод играет в научном творчестве вспомогательную роль, более того, в большей мере относится не к творческой, продуктивной, а к репродуктивной стороне научного познания. Тогда, с этой точки зрения, главное в научном творчестве, процессах научного открытия - это личные психологические способности ученого, его творческое воображение, интуиция, которые противостоят и превалируют над рациональной строгостью, логикой научного метода.
Весьма последовательно данную позицию отстаивали философы позитивистской ориентации, утверждавшие, что логику и методологию науки интересует контекст логического обоснования, а не открытия. Действительно, ни логика, ни метод не могут обеспечить абсолютно автоматического достижения истины, получения нового научного знания. Но, с другой стороны, невозможно и отрицание роли формально-логических компонентов и методов в процессах творчества. Процесс творчества не может быть абсолютно стихийным, недетерминируемым; напротив, творчество нуждается в определенной детерминирующей основе, главное место в которой как раз и занимают научный метод и логика. Для иллюстрации можно взять так называемые случайные научные открытия (радиоактивность, пенициллин и др.), которые появляются как бы неожиданно для ученых, воспринимаются как необусловленные, неподготовленные предшествующим развитием науки, т.е., на первый взгляд, такие открытия не вписываются в научный контекст, не детерминируются им и даже ему противоречат.
Е.П. Никитин, исследовавший данный вопрос, подразделяет опытные случайные открытия на три вида. Первый вид - позитивный, поскольку открытие происходит в русле поисков ученого, ожидается им, хотя и осуществляется иначе, нежели предполагалось. В этом случае факт детерминации научного творчества, научных открытий очевиден, не вызывает сомнения. Второй вид - нейтральный. Открытие происходит в тот момент, когда ученый вообще не рассчитывает ни на какое открытие, он как бы «натыкается» на новый объект. Третий вид - негативный. Ученый ожидает встречи с одним явлением, а открывает неожиданно другое. Рассматривая подобного рода открытия, Е.П. Никитин приходит к обоснованному выводу, что все они, в том числе и открытия второго и третьего вида, безусловно детерминированы, имеют определенные основания: их нельзя трактовать как невесть откуда взявшийся «подарок» природы или каких-либо абсолютно внешних случайных обстоятельств.
Анализ структуры творческой деятельности показывает, что любое научное открытие представляет собой сложный процесс, включающий ряд взаимосвязанных и необходимых этапов. Можно выделить подготовительный, инкубационный период (обдумывание программы научного поиска, выявление проблемы, формулировка задачи, отбор материала, попытки решения задачи и т.п.); этап интуитивного озарения, инсайта, т.е. «сердцевина», квинтэссенция творчества, выражающаяся в непосредственном выдвижении нового (научных идей, решений и т.п.) и стадию логической, методологической, теоретической разработки и проверки (теоретической, эмпирической) выдвинутого знания. Сама структура творческой научной деятельности свидетельствует, что этап непосредственного порождения нового, этап интуитивного озарения, т.е. этап собственно творчества становится возможным лишь как итог, следствие подготовительного детерминирующего творческие процессы периода, где ученый использует формы концентрированного надындивидуального опыта науки (теории, методы, известные решения и т.д.), а также свой собственный индивидуальный опыт научного исследования, отталкивается от уровня своих знаний, творческих способностей, глубины своего понимания проблемы.
Не последнюю роль в творческом процессе играет и заключительная стадия разработки и проверки сформулированного нового знания. Данная стадия детерминирует научное открытие в том смысле, что последнее должно быть воспринято, ассимилировано и правильно оценено, во-первых, самим исследователем, произведшим новое знание или случайно натолкнувшимся на новые явления, и, во-вторых, научным сообществом. В противном случае наука «пройдет мимо» новых данных и открытие не состоится. Это подтверждается историей науки. Известно, например, что открытие В. Гершелем планеты Уран в 1781 г. предваряло около 20 наблюдений этого небесного тела, которые, однако, не были восприняты и оценены адекватно, т.е. как научное открытие. Аналогично за несколько лет до Беккереля Парижская академия наук слушала сообщение Ньепса де Сен-Виктора о том, что раствор уранила засветил фотопленку в темноте. Однако открытие радиоактивности связывается с Беккерелем, поскольку и сам Беккерель, и научное сообщество в то время уже смогло воспринять и правильно оценить как открытие эти данные, увязать их с имеющимся научным знанием.
Интересно свидетельство Г. Селье относительно истории выдвижения концепции стресса как неспецифической реакции организма на любой опасный для него патогенный агент, раздражитель. Г. Селье вспоминает, что полученные им и Мак-Кроуном данные о нарушениях полового цикл; у подопытных животных в результате разнообразных экспериментальных воздействий: введения гормональных препаратов, нехватки различных витаминов, голодания, адреналэктомии и др., а также первое применение термина «стресс» для их описания не привлекло их внимания как авторов и должного понимания с их стороны и поэтому не было ими оценено и воспринято в качестве научного открытия.
Важным фактом, свидетельствующим в пользу обусловленности, де-терминируемости научных открытий, процессов научного творчества, выступает достаточно широко встречающееся в практике научного познания явление так называемых одновременных, независимых открытий. Как подчеркивает Е.П. Никитин: «Несколько ученых могут независимо друг от друга совершить одно и то же открытие потому, что для него имеются основания в том массиве знаний, который накоплен к данному моменту в человеческой культуре».
Сердцевина творчества, т.е. этап интуитивного выдвижения нового знания, наименее изучен, относительно него выдвигается целый, спектр различных гипотез, на одном полюсе которого находится принятая многими исследователями идея Аристотеля о природной обусловленности творческих способностей человека, на втором - развиваемая также многими приверженцами - учеными и философами - концепции Платона о божественной детерминации творческих процессов. При этом практически всеми специалистами признается неосознаваемость и неконтролируемость творчества, поскольку, как уже говорилось, фокус внимания в актах творчества направлен не на процесс решения, не на протекание творчества, а на решаемую проблему. Отмечается также, что творчество в качестве своего необходимого условия предполагает выход за рамки контроля, за рамки логики, предполагает нарушение стандартов, требований методов, так что научное творчество совершается не благодаря, а в известной мере вопреки правилам.
Единственный путь к открытию, новому - это путь ломки, нарушения стандартов, устоявшихся подходов в науке. Известный физик Луи де Бройль пишет: «Человеческая наука, по существу, рациональная в своих основах и по своим методам, может осуществлять свои наиболее замечательные завоевания лишь путем опасных внезапных скачков ума, когда проявляются способности, освобожденные от тяжелых оков строгого рассуждения, которые называют воображением, интуицией, остроумием. Лучше сказать, ученый проводит рациональный анализ и перебирает звено за звеном цепь своих дедукций; эта цепь сковывает его до определенного момента; затем он от нее мгновенно освобождается, и свобода его воображения, вновь обретенная, позволяет ему увидеть новые горизонты».
В этой связи метод, с одной стороны, выполняет эвристическую функцию, функцию приращения нового знания, так как научное творчество, получение нового знания, научные открытия базируются на методе, который представляет собой некоторый стандарт, осознанную программу, последовательную «логику» движения к истине, новому знанию. С другой стороны, метод в таком качестве выступает определенным препятствием научному творчеству, поскольку творчество предполагает нарушение стандарта, логики, заложенных в научном методе. Иными словами, место, занимаемое методом в процессах творчества, достаточно противоречиво: метод детерминирует творческие процессы, создает необходимую основу достижения нового знания, осуществления научных открытий и в то же время, будучи стандартом, который творческое мышление должно преодолевать, он в какой-то мере сдерживает, ограничивает его, направляет в рамки известного, репродуктивного. Данная ситуация объясняется как сложным характером процесса научного исследования, так и многокомпонентным строением самого метода, а также особенностями выполняемых им функций. В частности, метод функционирует как система норм, правил, регулирующих познавательную деятельность, т.е. методу присуща регулятивная функция. Регуляция научного исследования, осуществляемая методом, выполнение ученым его предписаний приводит в итоге к новому научному знанию, реализации творческих процессов. Однако главная фаза творчества - фаза инсайта, озарения, приводящая как раз непосредственно к порождению нового знания, осуществляется, как уже говорилось, неосознанно, вне контроля субъекта, ученого и метода и, более того, через нарушение логики и норм метода, т.е. вне действия регулятивной функции метода.
Объяснение данному феномену можно найти на основе анализа вопросов управления, контроля, детерминации творческих процессов продуцирования нового. Так, в качестве определяющих факторов, причин творческого процесса, например, выступает память субъекта творчества, имеющая нейрофизиологическую основу и зафиксированная в совокупности, фонде информационно избыточных энграмм, следов мозга; т.е. фактором творчества являются нейрофизиологические процессы трансформации и рекомбинации энграмм. Иными словами, причинными факторами, участвующими в актах непосредственного порождения нового знания, выступают биологические, природные, как указывал в свое время Аристотель, способности человека.
Возможно, причинные факторы творческих процессов находятся за пределами субъекта исследования и даже за границами системы научной познавательной деятельности; т.е. кроме субъекта творчества и его природных творческих способностей на творчество оказывают воздействие и разного рода внешние по отношению к ученому, творцу силы: несомненно влияние науки как особой автономной познавательной системы, научного метода как важнейшего элемента науки, несомненно также влияние внешней общественной среды, культуры, а, по Платону, действует еще и божественная сфера. Сегодня очевидно, что необходимо исследовать творческие процессы в широком контексте как узел пересечения всех возможных областей, содержащих причины, факторы, определяющие творчество. В этой связи Дж. Холтон пишет: «Я стараюсь рассматривать любой результат научной деятельности, опубликованный или неопубликованный, в качестве некоторого «события», расположенного на пересечении тех или иных исторических «траекторий» - таких как по преимуществу индивидуальные и осуществляющиеся наедине с самим собой личные усилия ученого; «публичное» научное знание, разделяемое членами того сообщества, в которое входит этот ученый; совокупность социологических факторов, влияющих на развитие науки, и, несомненно, общий культурный контекст данного времени». Вместе с тем, из всего многообразия факторов, влияющих на творческие процессы, следует выделять внутренние факторы, детерминирующие творчество непосредственно в системе научной деятельности, и факторы внешние, определяющие творчество извне, факторы, действие которых преломляется в непосредственных механизмах порождения новою знания.
Природу творческих процессов следует трактовать также исходя из различия в содержании понятий: «управление» и «детерминация». В частности, некорректно представление о том, что можно управлять основной фазой творчества, т.е. фазой интуиции, инсайта, в рамках которой и происходит непосредственное порождение нового: знания, решения и т.д. Ведь любое управление, представляющее собой систему целенаправленных, продуманных, осмысленных и поэтапно осуществляющихся воздействий на объект управления, возможно только как вполне осознаваемый, контролируемый процесс, но такого рода управление в отношении неосознаваемой, неконтролируемой, находящейся в сфере бессознательного интуиции попросту невозможно. Применительно к данной фазе творчества лучше подходит понятие «детерминация»; невозможно управлять интуицией, инсайтом, но вполне возможна ее детерминация, которая как раз и осуществляется посредством всего многообразия индивидуальных (нейрофизиологических, психологических и др.), внутренних для системы научной познавательной деятельности (научное знание, методы и пр.), а также внешних по отношению к науке и ученому факторов; спонтанное, совместное действие данных факторов на интуицию, акты непосредственного порождения нового, разумеется, носит опосредованный характер. Таким же образом следует рассматривать и эвристическую роль метода в научном творчестве.
Научный метод, несомненно, детерминирует творчество, фазу интуитивного порождения нового знания, но не может управлять ею. Управляет же метод системой научной деятельности в целом, которая, как уже говорилось, включает в себя как творческую, продуктивную, так и нетворческую, репродуктивную составляющие. Управляющая, регулятивная функция метода осуществляется во всем объеме, на всем протяжении научной деятельности, поскольку именно метод охватывает всю структуру деятельности в целом, упорядочивая применение в ней различных познавательных средств и действий.
Но, регулируя научную деятельность, управляя ею, метод тем самым создает основу, почву для порождения нового, т.е. определенным образом детерминирует, обусловливает творчество, главную интуитивную фазу возникновения нового знания. Иными словами, метод управляет всей системой научной деятельности и одновременно детерминирует творчество как раз потому, что творчество есть неотъемлемая сторона, момент научной деятельности, как впрочем, и других ее видов. Метод является важнейшим элементом управляющего, рефлексивного уровня научного познания, поскольку в нем содержатся правила и нормы, на которых основывается процесс научной деятельности. Кроме того, метод выступает как программа, в которой фиксируются основные этапы научного исследования, последовательность их реализации. Управляющее воздействие метода на научное познание заключается также в том, что на его основе контролируется формирование и применение основных средств научной деятельности, обеспечивающее целостность ее системы.
13. НАУЧНЫЕ РЕВОЛЮЦИИ
Философское осмысление динамики науки сталкивается с явлениями, для объяснения которых привлекается понятие «революция». Научные революции обусловливают серьезные повороты в культурно-техническом, экономическом, социально-психологическом и духовном развитии человеческого общества. Они представляют собой факт глубинных перемен в сфере познания. В чем именно состоят эти перемены, при каких условиях они происходят, что служит их причиной и к каким результатам они приводят? - подобные и другие вопросы рассматриваются обычно в рамках темы о научных революциях. Современные исследователи считают революции необходимым явлением в развитии науки.
Наука в своей сущности революционна. Ей свойственен отважный поиск, неудовлетворенность достигнутыми знаниями и даже бунтарство. Наука предъявляет высокие требования к тем, кто ей служит. Она временами живет по правилу: перестаньте быть людьми лабораторий и письменных столов. Выйдите за стены учебных корпусов. Перестаньте быть узкими специалистами, станьте Учеными, ответственными за всю науку. Пробудите кроме интеллекта еще и свой темперамент, свою мудрость и свою совесть в борьбе за научный прогресс. И наступают моменты истории, когда появляются те, кто готов совершить революционные скачки п научном познании, восставая против принятых ранее идей, принципов и концепций, против тирании старых воззрений.
Революции осуществляются по законам борьбы. Так это происходит и в науке. Возникает буря, которая сносит старые постройки в способах добычи и организации научного знания. В науке наступает полоса интеллектуального смятения и буйных новаций одновременно. Почва старых научных истин уходит из-под ног. А новые знания еще бесформенны, плохо организованы. В них зачастую нет необходимой для науки меры. И наука утрачивает респектабельность твердого достоверного знания. Она движется в неизвестное, которое многим кажется отрывом от реальности. Но в итоге обнаруживается, что наука переходит к более глубоким истинам, которые обобщаются в новой картине мира, в новой методологии и нередко - в новой технологии. И в существенной мере научные революции открывают новые пути и способы человеческого бытия в мире.
Революции позволяют науке активно участвовать в борьбе за право своего творческого существования. В этот период наука вступает в столкновение с устаревшими формами человеческой культуры: со старой метафизикой, с авторитарной и догматичной религией, с изжившими себя условностями морального поведения.
По форме своего осуществления революции являются мощной встряской, доходящей подчас до катаклизмов, в которых разрешаются накопившиеся в науке противоречия, отвергаются фундаментальные, как казалось, концепции и теории. В науке возникают напряжения и рывки, осуществляется смена форм представления знания. Все это может порождать резкие и очень бурные конфликты внутри научного сообщества. В такой ситуации сказываются неравномерность внутренних процессов, идущих в науке, нарушения «норм» научной деятельности, столкновения между стилями мышления, борьба между различными парадигмами в научном познании и т.п.
Важный аспект революции - это перемены в основаниях науки. Данное обстоятельство широко отмечается в мировой и отечественной литературе. В ходе революции в ткань науки внедряются новые идеалы, нормы, установки. Преобразуется научная картина мира. Это своего рода тектонические сдвиги в науке, результатом которых становится появление во многом неожиданной науки, уходящей в принципиальных основах от науки прежних эпох. Старая и новая наука по ряду параметров становятся несовместимыми, перестают быть конгруэнтными по отношению друг к другу.
Реже говорится о структурных, организационных и технологических сдвигах в науке революционных периодов. Между тем они являются важной характеристикой научной революции. Так, на переломных этапах в структуру науки включаются новые активные элементы: в XVIII в. это — академические сообщества, в XIX и XX вв. появились индустриальные лаборатории и др. К структурным сдвигам относится возникновение отраслей науки, которые способны осваивать принципиально новые области знания. Подобные революционные рывки были связаны с появлением технических наук, генетики, информационных наук и пр. Новая структура науки появлялась и как результат революционного движения, и как его побудительный фактор.
В современной философии науки все более укрепляется комплексный подход к исследованию научных революций. Осуществляется их науковедческий, исторический, культурологический, методологический анализ. Рост интереса к феномену научных революций обеспечил существенное обогащение наших знаний о них, и сегодня философское сообщество выдвигает задачу теоретического обобщения таких знаний.
Современная методология исследования научных революций объединяет ряд подходов и принципов. Аналитический подход позволяет различать своеобразные виды и типы научных революций, помогает обозначить внутренние и внешние факторы соответствующего революционного процесса. Синтетический, системный подход обеспечивает возможность целостного постижения научных революций. Применение принципа детерминизма создает условия для теоретического определения причин, законов и исторических перспектив революций в науке. В последние десятилетия выработан новый понятийный аппарат для объяснения механизмов научных революций, строятся различные классификации для их описания, выявляются общие законы роста научных знаний, необходимые условия устойчивого развития науки, определяются ограничения в отношении перспектив существования науки в культурном пространстве. Приобрела высокую популярность идея Т. Куна о своеобразии «нормальной» и революционной фаз эволюции науки. Первая фаза характеризуется идеологией традиционализма, авторитаризма, позитивного здравого смысла и сциентизма. Вторая фаза связана с рождением новой парадигмы, свержением авторитета прежних ведущих теорий, открытием новых закономерностей, которые не могут быть поняты в рамках прежних концепций и теорий.
Сегодня прочно усвоено представление о том, что научная революция не является кратковременным актом, она осуществляется как длительный процесс, в ходе которого идет радикальная трансформация многих параметров науки, переоцениваются ее фундаментальные ценности. Осознана возможность разных видов научных революций: мини-революций (протекают внутри отдельных научных дисциплин и касаются фрагментов их знаний; показательно, к примеру, революционное влияние на химию открытия кислорода); локальных революций (они производят взрыв внутри определенной науки и выливаются в новое направление движения соответствующего научного знания в целом; так развивались, например, события в современной космологии в связи с разработкой теории Большого взрыва); глобальных революций, которые протекают в пространстве всей науки и связаны с мировоззренческими, глубинными методологическими и даже социально-культурными переменами, составляющими подчас целую эпоху в прогрессивном развитии человечества.
В целях разработки общей теории научных революций представляется важной экспликация типов и основных направлений научной революции.
ТИПЫ НАУЧНЫХ РЕВОЛЮЦИЙ
Историки и философы науки различают несколько типов глобальных научных революций, связывая их с разномасштабными преобразованиями внутри науки и фиксируя такие повороты, которые существенно обновляют и научное знание, и научную деятельность, и способы организации науки.
Первая глобальная научная революция соотносится с периодом, охватившим время от публикации книги Н. Коперника «Об обращении небесных сфер» (1543 г.) до выхода в свет работы И. Ньютона «Математические начала натуральной философии». Между этими вехами произошли серьезные события, затронувшие жизнь и способы роста науки. Появилась классическая наука, которая во многом отошла от античной традиции и породила новый стиль научного мышления, включившего в свой состав эксперимент и математическую обработку его результатов. Вырос авторитет науки в обществе, но еще продолжали существовать и использоваться вненаучные практики (алхимия, астрология). Наука в это время осваивает новые идеи мировоззренческого порядка:
- происходит дезантропоморфизация природы (вводится представление о бездушном механистическом характере природных процессов);
- признается равенство всех видов труда (в науке равнозначимыми признаются теоретические и экспериментальные занятия);
- вводится представление о космосе как бесконечности; в то же время возрождаются идеи атомизма Демокрита и Эпикура.
Серьезной модернизации подвергается модель познания. Прогресс науки рассматривается в контексте движения от незнания к знанию. Признаются правомерными научный скепсис и критика достигнутых уже результатов. Субъектом познания считается индивидуальное сознание; оно берет на себя ответственность за достижение истины. В целом человеческий разум приобретает высокий статус. А его эффективность гарантирована разумным устройством космоса. Трудами Г. Галилея утвердилась в это время идея о науке как самостоятельной интеллектуальной деятельности. Он же высоко поднял значение математики как языка, на котором написана книга природы.
В эпоху первой революции рождаются и укрепляются устойчивые социально-культурные механизмы существования науки в качестве самостоятельной сферы деятельности, способной реагировать на запросы производства, зарождающейся промышленности и обогащать благодаря этому условия своего продвижения к истинному знанию о природе, обществе и человеке. Вместе с тем налаживаются отношения науки с морским делом (особенно в Англии, затем и в России), с военным ремеслом, политикой, образованием. Пересматривается статус ученого сословия, представители которого стали образованными людьми, способными заниматься исследовательской деятельностью.
Надо отметить рост темпов и масштабов таких исследований. Этому процессу способствовали новые факторы роста науки, в том числе: обобществление социальной жизни на почве рыночных отношений; становление единой истории человечества; резкое расширение ресурсного поля человеческой деятельности; формирование потребности в контроле, регуляции и управлении новыми ресурсами (биологическими, энергетическими и др.).
Содержание и ход первой революции ясно показывают, что, несмотря на глубокие перемены, затрагивающие основания науки и научной деятельности, революция не означает борьбы науки против науки. В этот период происходит смена и отбор идей, теорий, методов. Осуществляется смена курса или направлений исследований, ведутся острые дискуссии и споры. Но нет примитивного противоборства ученых против ученых. Общая цель науки как предприятия, устремленного к постижению истины, сохраняется. Идейная борьба здесь предполагает выход на новое качество знаний в различных областях науки с учетом открытых новых предметных областей и обновляющегося интеллектуального климата. Учитывается также появление новых ведущих центров научного познания, всплески и угасания массовости научной деятельности и другие обстоятельства.
В науке, как и в других областях культуры, реализуется триединый путь эволюции. Революционные всплески не нарушают этого триединства. Речь идет о том, что в науке складывается взаимодействие трех человеческих способностей: интуиции, разума и эмоций. Интуиция первой ведет ученых в неизведанные области. Разум стимулирует формулировку, построение и организацию знаний. Эмоции выражают отношение к результатам познания, связаны с проявлением уверенности, признательности в отношении усилий научного сообщества, иногда же пробуждается отвращение и печаль по поводу науки и собратьев-ученых. И все-таки ведущим элементом в этом комплексе ученые признают разумное, рациональное начало. Философы науки в основном поддерживают это признание.
На почве разума складывается позитивная картина эволюции науки. В ее рамках революционный всплеск выступает как фаза развития, в ходе которой наращиваются и обогащаются знания, несмотря на критическую и отчасти разрушительную работу в отношении ранее достигнутых знаний. На этом этапе выявляется возможность парадоксального и антиномичного пути эволюции науки, но при определяющем влиянии принципа кооперативности, взаимосвязанности научных работ. Наука складывается как поприще кооперативного, всеобщего труда.
Первая научная революция выявила пользу и эффективность многоуровневой организации науки. Обнаружилась также иррадиация влияния ушедших вперед лидеров на другие отделы науки (лидерство механики н распространение ее моделей и методов на космологию, физику и пр.). Проявилась еще и функция научного иммунитета - против повреждения знаний, засорения его «идолами» (по Ф. Бэкону). Эта революция показала важность своеобразного зондирования и «разведки нового» в науке (предположения и гипотезы, требующие проверки, вошли в ткань научного познания, стали способом развития науки). В науке этого периода была установлена также необходимость кадровой поддержки, представляющей собой область ресурсного обеспечения науки.
Интересные события произошли в науке с конца XVIII и до середины XIX столетия. Специалисты определяют этот период как вторую глобальную революцию в науке. Это было время сокращения сферы действия оснований классической науки Галилея и Ньютона. Создается принципиально новая идейная база и методология науки, к разработке которых приложили усилия в естествознании Ч. Дарвин, Ч. Лайель, в математике Н. Лобачевский, Б. Риман, в термодинамике Р. Клаузиус, в логике Дж. Буль, У. Джевонс и др. В науке бурно пошел процесс дифференциации, что привело к выделению многих самостоятельных наук (биология, геология, термодинамика и т.д.). Существенно расширилась предметная область науки. Методы и принципы механицизма оказались неадекватными для исследования в новых областях науки. В значительной мере это было связано с необходимостью изучения эволюционных процессов (в биологии, геологии), а также с формулировкой задач по исследованию организованных и неорганизованных сложных систем.
В этот период механическая картина мира и механистическая методология перестают быть общезначимыми. Они сохранили свое значение лишь для механики как особой отрасли науки. В то же время были обоснованы новые идеалы научного познания, расширившие поприще научных занятий. Благодаря идеям развития и системности научный подход оказался применимым к тем областям, где ранее еще не было науки (к биообъектам, к социальным явлениям и др.). Изменилось представление о совокупности научных законов. Их научная формулировка с этого исторического момента начинает связываться с категориями возможности и случайности. На такой почве началось применение статистико-вероятностных методов научного исследования. Наука приблизилась благодаря этому к разработке вероятностной картины мира.
Постепенно в науке этого времени формировался метод математического моделирования изучаемых процессов, и математика вошла в физику, химию, частично - в биологию и социологию. Причем показательно, что и сама математика продемонстрировала разные концептуальные системы, что способствовало использованию разных математик для решения научных задач.
Все сказанное свидетельствует о том, что в рамках науки завоевывал права принципиально новый тип рациональности, обеспечивающий гибкий поиск и формулировку нестандартных для механицизма научных законов, а также выработку новых емких средств для выражения накопленного знания. Свое конкретное проявление этот тип рациональности нашел в новых математических структурах, в использовании вероятностного языка и элементов вероятностной логики, в привлечении уровневого подхода для онтологических и гносеологических моделей научного описания и объяснения и т.д. Неслучайно в это время лидерами науки становятся биология, термодинамика, статистическая физика.
В конце XIX и в начале XX века осуществилась еще одна научная революция, имевшая долговременные последствия для развития многих областей науки и для технологии. Начиналась она с открытия явления радиоактивности и с разработки физического учения об атомном строении материи. А затем появились теория относительности и квантовая механика, новые космологические модели нестационарной вселенной, генетика и теория популяций, кибернетика и информатика. В XX в. вал научных открытий и разработок стал активно проникать в промышленность, в экономику и бизнес, в процесс создания новых вооружений. В целом двадцатое столетие стало свидетелем научно-технической революции.
Эта научная революция совпала с эпохой бурного развития индустриального, а затем и постиндустриального общества. Вместе с тем она оказалась сопряжена с крутой модернизацией такой общественной структуры, как образование. Она воплотилась также в освоение глобальных пространств и космических просторов. Историки справедливо отмечают также рост ее темпов и масштабов в сравнении с предшествующими революциями. Ускорению развития науки содействовали новые факторы, среди которых надо назвать: обобществление социальной жизни (в рыночной и нерыночной формах) и становление единой истории человечества; резкий рост ресурсного поля человеческой деятельности, а также формирование потребности в контроле, регуляции и управлении новыми масштабными ресурсами (биоресурсами, энергетическими и др.). К дополнительным факторам следует отнести и военные. Наука в своем бурном росте зачастую сливалась с милитаризацией общества.
В когнитивном плане третья глобальная научная революция утвердила основы неклассической науки и соответствующий им тип рациональности. Одна из новых фундаментальных рациональных идей связана с утверждением, что в научном познании объект не присутствует в его при-родно-девственном состоянии. Напротив, всегда надо учитывать взаимодействие объекта и средств познания. Квантовая физика ввела принцип взаимодействия объекта с прибором. Этим утверждалась необходимость корреляции между знаниями об объекте и своеобразием средств и методов, которые используются в конкретной исследовательской ситуации.
Далее. В науке получил признание принцип неопределенности (В. Гейзенберг), основанный на невозможности предельной точности измерений и на неустранимости возмущающего воздействия исследовательских средств на состояние изучаемого объекта.
После А. Эйнштейна утвердилась тенденция к использованию мысленных экспериментов и к изучению виртуальной реальности, сконструированной научным разумом. Вместе с тем благодаря А. Эйнштейну в науку вошло представление о корпускулярно-волновом дуализме и об электромагнитном поле как особом виде материи, соединяющем в себе свойства непрерывности и прерывности. Этим закладывались основы для пересмотра старой картины мира. Но в то же время менялись философско-методологические принципы научного объяснения и преобразовывались схемы построения научных теорий.
Философы науки и ученые поняли, что теории не возникают чисто индуктивным путем из эмпирического материала. Подобный материал организуется и объясняется в соответствии с определенными способами его видения, задаваемыми некими метатеорегическими соображениями, возникающими на уровне картины мира и идеалов познания.
В период революционной ломки науки осуществляется также перегруппировка старых представлений о реальности, о методах и схемах познания. Часть из старого багажа устраняется, но включаются новые элементы и решается задача преодоления трудностей, противоречий, парадоксов, с которыми сталкиваются старые теории при осмыслении новых научных явлений и фактов. Философы и историки науки отмечают в этой связи как необходимую ту работу, которая была проделана по переосмыслению понятий пространства и времени (в связи с возникновением теории относительности), детерминизма и причинности (в связи с появлением квантовой теории), системности и информации пр.
С середины XX столетия получила признание идея, что каждая наука способна конструировать собственную научную реальность и имеет с ней дело в своих средствах. Теперь принимается тезис о плюрализме достоверных теорий в отношении изучения одного и того же объекта. Способы организации подобных теорий составляют когнитивное поприще современной науки.
Отечественный исследователь проблем науки B.C. Степин обнаружил, что для научной революции, для преобразования картины реальности и норм познания, в принципе, не обязательно, чтобы в науке были зафиксированы серьезные парадоксы. Преобразование ее оснований может осуществиться за счет переноса парадигмальных установок и принципов из смежных наук, вступающих в междисциплинарное общение. Поставщиками таких установок обычно становятся лидеры науки. Их идеалы и нормы нередко приобретают общенаучное значение. Использование принятых таким путем схем объяснения помогает найти нетривиальные результаты в других науках. Так, в XX столетии произошло обогащение содержания многих наук за счет внедрения идей системности, информации и др.
Активизация жизни научного сообщества в XX столетии, идейная борьба между различными школами, наличие различных способов генерирования ими знаний показали, что в науке нет однолинейного развития, а в период научной революции осуществляется принципиальный выбор среди разных направлений роста знаний. Как оказалось, в науке сталкиваются несколько возможных путей развития, которые, однако, не все реализуются в действительной научной истории. Так, А. Эйнштейн искал иную интерпретацию квантовой механики, нежели та, которую приняла копенгагенская школа. По его же пути пытался продвинуться Д. Бом в своих поисках «скрытых параметров» и в попытках устранения статистического характера квантово-механического описания. Аналогично альтернативный поиск (по отношению к максвелловскому пути развития физики) вел Р. Фейнман, пытаясь разработать физическую картину мира, в которой взаимодействие зарядов изображалось бы как передача сил с конечной скоростью без представлении о материальных полях (с этой точки зрения он строил квантовую электродинамику в терминах интегралов по траекториям).
Интересно, что сами физики, создавая новые картины реальности в XX веке, не считали, что они вступают друг с другом в жесткое противоборство, не требовали авторитета абсолютной истины для своих теорий. В новой ситуации срабатывал стиль мышления, в котором проявлялся неклассический тип рациональности. Согласно его фундаментальным установкам мышление воспроизводит объект как вплетенный в человеческую деятельность. Оно строит образы объекта, коррелируя их с исторически сложившимися средствами постижения реальности. В подобном контексте никакие научные знания не рассматриваются в качестве единственно правильных. В иных традициях, в рамках другого языка научного описания, в других познавательных ситуациях они могут представлять иной срез реальности, соотнесенный с тем же по существу объектом. Здесь признается, что наука не дает мгновенного снимка объективной реальности. Ее знания только объективно относительны.
Структура знаний в период третьей революции также преобразуется. В ней широко представлены своеобразные «посредники», которые встраиваются между познающим субъектом и объектом. В свое время Н. Бор апробировал методологический подход, в котором признаки изучаемого объекта задавались через экспликацию операциональной схемы его познания. В квантовой физике эта схема применялась на базе представления о корпускулярно-волновом дуализме проявления микрообъектов, а также учитывала принцип дополнительности - в силу макроскопической природы приборов.
Важный урок исторического развития науки в XX веке состоит в том, что содержание научной революции нельзя сводить только к когнитивным преобразованиям. Эта революция протекает в контексте главных процессов развития общества. Ее бурные проявления обнаруживаются и в системе знаний, и в системе деятельности ученых, и в системе социальных институтов, свойственных науке.
Научная революция превратилась в перманентный процесс и продолжает набирать обороты уже в новом столетии. Сегодня она характеризуется возможностями возникновения общества, основанного на знаниях, а также осуществлением процессов создания технологической базы пятого поколения. Кроме того, выявляется экологический и гуманитарный характер этой революции. Она приняла уже международные масштабы', но реализуется пока только в высокоразвитых странах, вставших на путь современной модернизации.
РЕВОЛЮЦИОННЫЙ ПОТЕНЦИАЛ СОВРЕМЕННОЙ НАУКИ
Прежде всего отметим, что научное познание во второй половине XX века вновь радикально преобразует свою категориальную сеть, формирует новую картину мира, использует необычные для недавнего еще прошлого методологические концепции. Все это, конечно, имеет место. При ближайшем рассмотрении выясняется, что дело идет о формировании преобразованного типа рациональности, который базируется на объединении системно-организационного и историко-эволюционного подходов к объяснению сверхсложных объектов.
Сегодня философы науки правомерно говорят о рождении постнеклассической науки, исследовательский интерес которой обращен к особым объектам (Земля как общий исторический дом человечества и уникальный носитель жизни, грандиозные искусственные системы - типа осваиваемого ближнего космоса и др.).
В последние десятилетия возникло новое научное направление, определяемое как синергетика. Синергетический подход, принципы синергетического исследования и деятельности применяются в самых различных сферах науки и практики. Предметная область этого направления связана с выявлением и исследованием исторически развивающихся систем. Их описание и объяснение базируется на теоретических принципах самоорганизации и саморегуляции, на изучении возможностей перехода сложных систем от одного уровня устойчивости к другому. Учитывается также перелом постепенности в эволюции систем, наличие «точек бифуркации» в их истории. В таких точках возможностные структуры эволюции становятся важным фактором детерминации. В силу этого весь процесс эволюции приобретает нелинейный характер
Изменения подобных систем не могут быть адекватно схвачены в терминах классического однолинейного и даже неклассического вероятностного детерминизма. Теперь используются критерии и методы сценарного представлении исторических изменений. Соответственно разрабатывается методология исторической реконструкции для изучения и объяснения сверхсложных эволюционных процессов. Она применяется для построения перспектив будущего человечества, для воспроизведения последствий Большого взрыва Вселенной и т.д.
На такой почве возникает обоснованное представление о новой роли субъекта в научном познании. Уже в неклассической науке было осознано, что субъект не является внешним сторонним наблюдателем протекающих процессов. Теперь же вводится более сильная установка, гласящая, что субъект участвует в ситуации выбора и своим воздействием способен влиять на поле возможных состояний системы. А в земных условиях он становится главным участником геологических, экологических и других процессов. Человеческие перспективы воздействия на суперсложные системы усиливаются в связи с появлением компьютерных технологий и созданием методов автоматической переработки громадных массивов информации.
Переход к постижению сверхсложных систем заставляет пересматривать существовавшие до недавнего времени критерии оценки истинности познания. Сегодня уже не может считаться удовлетворительной нейтрально-истинностная позиция исследователей. Трактовка науки только как некой исследовательской технологии, настроенной на объективную истину, становится недостаточной. Поскольку масштабы научной деятельности с подобными системами затрагивают интересы больших масс человечества, а подчас и судьбу всего человечества, постольку сегодня в науке пробивают себе дорогу разумно взвешенные действия. Наука начинает опираться на оценки больших сообществ людей, на выводы авторитетных экспертов и пр. Правилом становится обсуждение в науке и в обществе ограничений и запретов на определенные виды исследовательской работы (например, в области генной инженерии).
На фоне подобных изменений в основаниях науки приобретают остроту новые вопросы: имеет ли научное рациональное познание безусловный приоритет перед до-рациональными и внерациональными формами познания? Этот вопрос еще не получил четкого решения. Высказывается также предположение, что вхождение человечества в космическую эру потребует очередного преобразования принципов научной рациональности за счет введения в основания науки идей гармонии, целостности человеческого бытия, правильного пути жизни и др., освоенных когда-то в восточной философской традиции. К этому же подталкивают и заботы, возникшие перед нами в атомную эру существования общества.
Итак, наука в последние примерно тридцать лет переходит в некоторую ультрасовременную фазу своего развития. Одна из ведущих черт этой фазы заключается в том, что для современной науки характерен многовекторный охват предметных областей. Выбор ее проблем и тематики, формирование новых методов, разработка инструментально-технической базы осуществляются в чрезвычайно широком горизонте, что позволяет говорить о целом фронте развития науки. Ситуация такова, что уходит в прошлое классическое понятие о лидере науки (о «дисциплине-лидере»). Сегодня много лидеров, которые попеременно сменяют друг друга на передовом фронте исследований. Но они еще и объединяются в рамках комплексных, многодисциплинарных научных разработок. Налицо также каскадное развитие науки. Суть последнего состоит в том, что научная находка или открытие, сделанные в прошлом, получают многократное продолжение в более позднее время. Например, в 1902 г. американец Роберт Вуд установил изменение интенсивности пучка света, дифрагирующего на решетке. Он наблюдал поверхностные плазмоны в оптическом диапазоне. Но объяснение аномалий Вуда было дано только в 1941 г. итальянцем Уго Фано. А в конце 60-х гг. XX в. А. Отто сформулировал условия для возбуждения ПП-волны на гладких поверхностях, указал метод их возбуждения в оптическом диапазоне и открыл путь к экспериментальному исследованию поверхностных плазмонов в оптическом диапазоне. Каскад открытий продолжился в работах Э. Кречмана (1971 г.), а далее - в работах В. Кноля и Б. Ротенхойслера, которые предложили использовать поверхностные плазмоны для микроскопии (1988 г). Была создана рабочая модель такого микроскопа, которая применяется теперь в физике, химии, биологии, технике. Так, микроскоп на основе ПП-резонанса используется для снятия кинетики протекания химических и биохимических реакций, для контроля размеров образующихся на поверхности комплексов.
Сегодня правомерно также говорить о глобально ориентированном развитии науки. К этому побуждают масштабы производственной деятельности человечества, объектом которой становится вся планета Земля и ее ближний космос. Поэтому в ряд самых значимых проблем становятся исследования тектонических процессов и процессов в глубине земной коры, изучение мирового океана, исследование массовых атмосферных явлений, динамика земного климата, изучение состояния биосферы, разработка проблем загрязнения околоземного космического пространства и др.
Надо отметить также био- и антропоцентрированное развитие современной науки. Проблема жизни и проблема человека занимает ведущее положение в массиве современных научных исследований. Они разрабатываются в аспекте и естественнонаучных, и социальных, и культурно-духовных задач, обострившихся в последние десятилетия.
Говоря о революции в современной науке, отметим создание и функционирование превращенных форм научных (исследовательских) сообществ, а также внедрение международного принципа работы научных структур. Примером формирования новых сообществ может служить организация «распределенных вычислений». На основе принципа «распределенных вычислений» был развернут проект поиска внеземных цивилизаций, объединивший полтора миллиона добровольцев. Находясь в связи с центром всего проекта через Интернет, громадное число частных владельцев компьютеров обеспечивают вычислительную мощность 8 Тфопс. Реализован также проект массового участия в определении новых последовательностей числа пи. И теперь математики точно знают, какая цифра стоит на квадрилионной позиции этой последовательности.
Международный принцип работы используется в современной науке широко и плодотворно. Так, Европейская организация ядерных исследований (ЦЕРН) сосредоточила объемные финансовые, технические и интеллектуальные ресурсы, что обеспечивает проведение грандиозных исследований, позволивших открыть элементарные частицы, участвующие в переносе слабого взаимодействия. В последние годы ученые этого центра существенно продвинулись в понимании процессов, происходящих во Вселенной. В частности, проведены эксперименты по детектированию «вимпсов», слабо взаимодействующих с обычным веществом. Интернационализации научных работ содействуют также Принстонский международный центр, Будапештский клуб, Римский клуб, Объединенный институт ядерных исследований (Дубна). При ООН разрабатывается программа «Новый международный экономический порядок». Проводятся мировые инновационные форумы, например, Московский международный салон промышленной собственности «Архимед». Начала свою работу российско-американская группа по космической медицине, созданная совместным решением РКА и ПАСА. Свою задачу она видит в стратегическом планировании фундаментальных исследований в космосе и на Земле. В том числе предполагается развернуть исследования радиационного воздействия на человека; механизмов деструкции материалов космических станций под воздействием микроорганизмов; пути создания модифицированных растений, способных жить в условиях Марса.
Новый поворот в науке связан со сквозной разработкой в ней темы безопасности. Идет разработка концептуальной платформы безопасности для современного человечества. Вырабатываются методы прогноза, предупреждения и управления разнообразными рисками, с которыми сталкивается новейшее общество. Выявлены различные аспекты безопасности, в том числе военная, экологическая, биологическая, радиационная, информационная и др. Идет осознание того обстоятельства, что в этой области требуется зачастую разработка уникальных проектов, рассчитанных на избирательное функционирование крупных искусственных систем, обеспечивающих противодействие масштабным рискам и создающих условия для устойчивого развития человечества.
Революционным для современной науки является формирование устойчивой цепочки: исследование, расчет, наблюдение, воздействие на объект, технология. Причем технологичными становятся даже экзотические открытия. Такой путь проделало, например, открытие и применение фуллеренов, которые впервые были обнаружены в недрах космической материи.
Возникает положительная связь между звеньями научной работы. Процесс идет как эстафетный: открытие эффекта - создание аппаратуры и приборов на базе этого эффекта - использование аппаратуры в других областях науки - новые, подчас сенсационные, открытия в этих областях -появление подлинных взрывов и переворотов в соответствующих сферах науки. Сегодня в рамках подобных эстафет ожидаются взрывы в генетике, медицине, микроэлектронике.
Добавим, что в науке сегодня осуществляется мощное технологическое сопровождение фундаментальных исследований. Показательно, например, что на коллайдере RHIC (работает на тяжелых релятивистских ионах золота) предпринята попытка в лабораторных условиях воссоздан, процесс Большого взрыва нашей Вселенной. Необходимо отметить также возникновение уникальных средств изучения уникальных объектов. К ним относятся, например, некоторые средства изучения Земли: сверхглубокие скважины (9 км - в Германии, 12 км - на Кольском полуострове); появились глубоководные аппараты для исследования океана; пошли по уникальным маршрутам атомные ледокольные суда, а ледокол «Арктика» покорил Северный полюс.
Революционный потенциал современной науки воплощается в серии новейших технологических прорывов.
Прорыв в средствах связи
Традиционно в мире используются радиосвязь, телеграф, телевидение. Новый рывок оказался возможным с появлением световой (оптической) связи. Она возникла в 1960 г. В то же время начали шествие лазеры. Использование для связи микронных волн видимого света позволило многократно уплотнить передаваемую по кабелю специального назначения информацию. В качестве такого кабеля было предложено использовать длинные стеклянные волокна, а затем - двухслойные световоды и световоды из чистого кварцевого стекла. В 1988 г. была проложена первая трансатлантическая BOЛC ТАТ-8. По ней осуществлялись одновременно 600000 тысяч телефонных разговоров вместо 36 по проводному кабелю. В течение 2000 г. проложена ЛОBC «Москва - Санкт Петербург - Стокгольм», которая обеспечивает еще и доступ в Интернет. В настоящее время число пользователей Интернет через BOЛC превышает один миллиард человек.
Еще один рывок в этой области обеспечен развитием спутниковой связи и спутниковых средств навигации. Развитие данной области тесно сопряжено с прогрессом космонавтики. Искусственные спутники Земли используются для передачи и приема различных сигналов и информации (о внутреннем состоянии космических объектов, об их местоположении на орбите, передаются телевизионные сигналы о космических съемках и т.д.). В последней четверти XX в. началось использование уникальной системы спутникового глобального позиционирования (GPS). Правительство США потратило на создание этой системы десятки миллиардов долларов. Современная GPS состоит из трех сегментов: космического, сегмента контроля и пользовательского сегмента. В нее входят 24 спутника, которые находятся на 6 орбитах. На орбиту выводятся и дублирующие спутники. На Земле расположены станции наблюдения и ведущая станция (в объединенном центре управления космическими системами военного назначения). Основной потребитель информации этой системы - Министерство обороны США. Приемники информации установлены на всех боевых и транспортных самолетах и кораблях, а также в крылатых ракетах и в системах наведения новых управляемых авиабомб.
Аналогичная система - ГЛОНАСС - была создана и в СССР. Ее космический сегмент охватывает 24 спутника, размещенных на трех разных орбитах. Однако в последние годы она не развивается по причине недофинансирования. К тому же она закрыта для гражданских пользователей.
Энергетический прорыв
Во второй половине XX в. бурно развивалась наукоемкая энергетика. Известно, что в основе энергетики лежит преобразование различных видов энергии (механической, тепловой, электрической и др.). Выработка контролируемой энергии достигается с помощью сложных технических устройств, использующих разнообразные процессы, открытые наукой.
В современной техногенной цивилизации главным источником энергии служит углеводородное сырье. Однако его запасы ограничены, и потому взоры ученых обратились к использованию альтернативных источников: лучистой энергии Солнца, геотермальных вод, энергии ветра, колебаний вод морей и океанов и пр. В качестве принципиально нового источника рассматривается прирученная атомная и термоядерная энергия. В этой области первоначально была использована контролируемая реакция цепного деления урана. В 1954 г. была построена первая атомная электростанция и тем самым доказана возможность производства электрической энергии на основе расщепления ядер урана.
Для создания энергетических сооружений нового типа пришлось решать комплекс новых физических, химических, технологических проблем. Энергетическая эффективность деления урана была обоснована тем, что при распаде одного его грамма выделяется столько же тепла, сколько при сгорании трех тонн каменного угля. Но технологический эффект удалой, получить, когда были сконструированы и построены специальные реакторы. Сегодня есть печальный опыт эксплуатации реактора типа РБМК (на медленных нейтронах) и достаточно успешный опыт работы реакторов ВВЭР. После чернобыльской катастрофы ученые начали сомневаться в безопасности эксплуатации АЭС. Законную тревогу проявляет и население. Однако оптимистические подходы к развитию ядерной энергетики сохраняются. В последние годы много внимания уделяется созданию реакторов на быстрых нейтронах (реакторы-размножители). В них используется уран-238, но для получения не энергии, а горючего. Этот изотоп урана хорошо поглощает быстрые нейтроны и превращается в плутоний-239. Появляется вторичное ядерное топливо, которое можно использовать в дальнейшем. Здесь нет зон высокого давления, в качестве теплоносителя применяется жидкий натрий, разработаны несколько защитных оболочек. Специалисты полагают, что реакторы на быстрых нейтронах способны обеспечить человечество теплом и электроэнергией на ближайшее тысячелетие.
Разрабатываются также энергетические программы по использованию термоядерных реакций. Дело идет о создании уникальных установок, предназначенных для получения колоссальной энергии, которая выделяется покалишь при опустошительном взрыве водородной бомбы.
Учеными установлено, что для осуществления термоядерной реакции необходимо соблюдение нескольких условий. Например, для реакции синтеза тяжелых ядер водорода нужна температура порядка 100 миллионов градусов. Такой перегрев приводит к появлению плазмы - смеси свободно двигающихся положительных ионов и электронов. Нужна также высочайшая плотность плазмы (выше ста тысяч миллиардов частиц в кубическом сантиметре). К тому же реакцию надо сохранить во времени не менее одной секунды.
В созданных к настоящему времени уникальных установках («Тока-мак-10, «Токамак-15») удается соблюсти не все названные условия. К тому же эти установки пока потребляют огромную энергию для создания предварительных условий, но компенсация вновь полученной энергии еще не осуществлена. Чтобы термоядерный реактор работал, надо производить энергии в пять раз больше, чем тратится на нагревание плазмы и создание магнитных полей. Существует проект создания международного термоядерного реактора (ITER), который, возможно, решит эту грандиозную задачу. Хотя трудностей еще так много, что практическое использование термоядерной энергии можно ожидать лишь в отдаленном будущем.
Информационный прорыв
Развитие науки оказалось неразрывно связано с информационным прорывом, который принял глобальную форму и существенным образом повлиял на социально-экономические структуры мира. По мнению многих специалистов, человечество стоит на пороге формирования информационного общества. В наше время созданы мощные инфраструктуры, включающие телекоммуникационные и компьютерные сети, а также распределенные базы данных и знаний. В экономике развитых стран появляется новая отрасль производства, включающая деятельность по созданию, распространению, обработке и потребления информации. Эта отрасль вовлекает значительную часть самодеятельного населения.
Весь этот процесс получил название информатизации. Он был осуществлен благодаря использованию компьютерных технологий, которые усовершенствовали и автоматизировали переработку громадных массивов информации. Информатизация, таким образом, идет в тесной связи с компьютеризацией.
Практическая сторона дела тесно связана в данной области с серьезными концептуальными и научно-методологическими разработками, которые привели к появлению новой отрасли фундаментального знания. Здесь поработали К. Шеннон, Н. Винер, У. Росс Эшби, Дж. фон Нейман и другие корифеи науки XX столетия. Вместе с тем создана база для новейших технологий, которые революционным образом влияют на прогресс общества. Стартовым моментом явилось построение электронных вычислительных машин (типа ENIAC и др.). Общие принципы их создания разработал Дж. фон Нейман. Он предложил необходимый набор структурных элементов для ЭВМ и технологическую последовательность автоматической обработки информации, предполагающей выполнение инструкций специальной программы.
Современные компьютеры обрабатывают информацию, представленную в цифровой форме. Универсальный двоичный цифровой код позволяет представить на компьютере любую качественную информацию (тексты, графику, звук, изображение).
За несколько десятилетий XX столетия сменили друг друга пять поколений ЭВМ. В последние годы взят курс на создание сверх-ЭВМ (проект "Компьютерная инициатива"). Амбициозная цель этого проекта - разработка ЭВМ с быстродействием и объемом памяти на несколько порядков большими, чем у ныне существующих. В 2001 г. корпорация IBM создала для Министерства обороны США суперкомпьютер вычислительной мощностью 478 миллиардов операций в секунду. Кроме Пентагона им намерены пользоваться и другие ведомства и научные учреждения. С помощью мощных компьютеров американские иммунологи, например, создали препарат, способный бороться со 160 вирусами.
152
Специалисты высказываются, что к технологиям, способствующим резкому увеличению вычислительной мощности компьютеров, относятся молекулярные или атомные технологии; различные биологические материалы и ДНК; трехмерные технологии; технологии, основанные на фотонах вместо электронов; квантовые технологии, в которых используются элементарные частицы. Делается прогноз, что в XXI в. вычислительная техника будет сопряжена не только со средствами связи и машиностроением, но и с биологическими процессами. Тогда возникнет перспектива создания разумных машин, «живых компьютеров» и человеко-машинных гибридов.
Сегодня одно из новейших направлений - попытки создания нейрокомпьютеров. Их устройство (микросхемы) близки по строению нейронным сетям человеческого мозга. Благодаря этому нейрокомпьютер способен к обучению. Он может использоваться в решении задач без четкого алгоритма и справляется с огромными потоками информации. Уже сегодня подобные компьютеры применяются на финансовых биржах, предсказывая колебания курсов валют и акций. Через десять лет, по словам Билла Гейтса, доля таких компьютеров на рынке вырастет до девяноста процентов. Интересно отметить, что в создание подобных компьютеров включились российские разработчики (фирма НТЦ «Модуль» создала нейропро-цессор NM 6403. В печати сообщается, что этот процессор удостоен золотой медали на Всемирном салоне изобретений «Брюссель-Эврика».
Предпосылки новой научной революции в России
Новейшая революция - это событие мировой науки. В российской науке она свершается в той мере, в какой происходит включение российских ученых в этот всемирный процесс. При этом необходимо учитывать своеобразное разделение научного труда, которое существует в мировом сообществе ученых. Российская наука не охватывала и не может охватить все сегменты бурно развивающейся мировой науки; она может участвовать лишь в разработке определенных векторов научного прогресса на этапе научных революций. Выше было установлено, что научная революция идет в глубоких пластах познания и сопряжена с фундаментальными сдвигами в научной идеологии и в способах воплощения науки в социальную, экономическую, технологическую действительность. Потенциал российской науки позволяет ей реально участвовать в разработке принципиальных проблем современного развития мировой науки. Для этого есть множество предпосылок, но существуют, конечно, и серьезные трудности, о чем стоит говорить особо.
В России сложилась многовековая собственная история науки, которая вплотную приблизила ее к передовому фронту мировой науки и подготовила научное сознание к тому, что главные повороты научной мысли вполне осваивались русскими учеными.
Еще в XVIII в. великий реформатор Петр I, стремясь догнать европейскую цивилизацию, решил использовать силу науки для достижения этой цели. Была создана Российская (Петербургская) академия наук, в которой начали работать иностранные ученые. Но достаточно скоро появились русские ученые умы. Для истории представляет интерес, что в России впервые заявило о себе международное, по сути, сообщество ученых. Это был новый субъект науки, который дал множество плодотворных научных результатов мирового значения. Россия также вышла на высокий уровень в международный век научного Просвещения. Этому способствовало уникальное строение первого российского научного учреждения, которое совмещалось с учебным учреждением. Российские научные гении этой эпохи участвовали в разработке главных направлений науки, содействуя внедрению фундаментальных научных парадигм, связанных с механистическим мировоззрением. Выдающиеся результаты такого уровня принадлежат Л. Эйлеру, Д. Бернулли, М. Ломоносову.
JI. Эйлер заложил основы механики твердых тел, аналитически исследовал ньютоновскую динамику материальной точки, разработал новую концепцию движения Луны. С его именем связан подлинный математический прорыв в механистической методологии. Д. Бернулли заложил основы математического решения задач гидравлики, разрабатывал кинетическую теорию газов. Это был прорыв на более высокий уровень математического описания природы, нежели использование математики Г. Галилеем и И. Ньютоном. Отмечая мощный вклад М. Ломоносова в достижения первой научной революции, укажем только, что он принимал живейшее участие в создании молекулярно-кинетической теории. Здесь механика поворачивалась от теории небесных и земных тел к атомно-молекулярным явлениям. Она осваивала идею уровневого строения природы. Ломоносов стал также новатором в разработке учения о планетной составляющей Солнечной системы. Он, в частности, описал строение Земли, открыл атмосферу Венеры.
XIX в., который обеспечил простор новому витку в революционном развитии науки, вместил в себя фундаментальные идеи и принципы, разработанные русскими учеными. Начало этому дал Н.И. Лобачевский, совершив переворот в представлениях о природе пространства, создав неэвклидову геометрию. Его идеи пересеклись с идеями, наработанными К. Гауссом.
В XIX в. началось шествие немеханических идей. Платформу для этого создала термодинамика и статистическая физика. Российская наука активно вошла в полосу термодинамического мышления. Среди ярких ее представителей стоит назвать академика Германа Ивановича Гесса. Он распространил изучение тепловых явлений на область химии, открыл основной закон термохимии, обосновал закон сохранения энергии в применении и к физическим, и к химическим процессам. Из его трудов вытекало новое направление в исследовании самопроизвольных процессов в сложных системах. Впоследствии оно получило мощную поддержку в трудах американского ученого Дж. Гиббса.
Революция в химии во многом оказалась связана с работами русских ученых. A.M. Бутлеров заложил основы органической химии, обосновал новые принципы молекулярного строения и структуры химических веществ, первым объяснил явление изомерии. Н.Н. Зинин разработал фундаментальные методы химического синтеза, впервые синтезировал анилин, проложил пути промышленного производства, красителей, душистых веществ, лекарств. Д.И. Менделеев открыл и обосновал закон периодической зависимости свойств химических элементов от их атомных весов, составил периодическую систему химических элементов. Он продемонстрировал существование новых типов законов природы, отличных от законов механической физики. Он же осуществил важный поворот науки к технологическим разработкам, предложив промышленный способ фракционного разделения нефти.
Русские ученые XIX в. оказались на острие прорыва в разработке вероятностных идей. Мировой авторитет приобрели груды П.Л. Чебышева, который доказал в общей форме закон больших чисел. Всеобщее признание и широкое применение получила теория вероятностных процессов, разработанная математиком А.А. Марковым.
В большой степени русские ученые содействовали разработке новых идей и принципов познания в области биологических наук. И.М. Сеченов обосновал рефлекторную теорию сознательной и бессознательной деятельности, ввел объективные методы в изучение психических явлений. Он открыл механизмы центрального торможения в мозговых процессах, создал объективную психологию поведения. И.И. Мечников обосновал фундаментальные идеи в области эволюционной эмбриологии, создал фагоцитарную теорию в иммунологии, стал основателем современной геронтологии и танатологии, разработал учение об ортобиозе - оптимистическом стиле жизни. Он наметил поворот науки к проблемам, которые становятся чрезвычайно актуальными в наше время. И.П. Павлов создал учение о высшей нервной деятельности, исследовал механизмы второй сигнальной системы. Он ввел в науку так называемый хронический эксперимент, позволяющий изучать здоровый организм. Его идеи и разработки оказали огромное влияние на развитие медицины, психологии, педагогики.
Удивительные революционные скачки и метаморфозы продемонстрировала отечественная наука в XX столетии. Ее революционный подъем оказался связанным с развитием советского государства, с чрезвычайными методами управления, с тоталитарным контролем государства над всеми ресурсами общества. Огосударствленной науке был задан импульс на встраивание в крупномасштабные проекты индустриализации страны и в решение проблем военно-промышленного комплекса. Параллельно разрабатывались механизмы взаимодействия науки и системы образования.
В глобальную научную революцию отечественная наука включалась сразу по многим направлениям своего развития. Впервые в истории она оказалась способна обеспечивать широкий фронт передовых научных исследований.
Путь к вершинам мировой науки и к внедрению новых парадигм научного познания прокладывали представители русского космизма. К.Э. Циолковский стал основоположником космонавтики. С его именем связан один из решающих прорывов науки и техники XX столетия. Он обосновал необходимость и возможность использования ракет для межпланетных сообщений, предложил инженерные решения по конструированию ракет и жидкостных реактивных двигателей. Им разработан проект расселения человечества в Солнечной системе и в звездных мирах. Научные разработки К.Э. Циолковского стали базой для реального выхода людей в космос, обеспеченного усилиями нового поколения разработчиков (С.П. Королев и др.). Отечественные космические аппараты стали работать на Луне, достигли Венеры, исследовали кометы, была создана орбитальная станция «Мир» и т.д. Были созданы система ГЛОНАСС - глобальная спутниковая система навигации, спутниковое телевидение, организовано цифровое спутниковое вещание (НТВ+).
В становлении и развитии современной научной картины мира исключительно велика роль В.И. Вернадского. В центре его идей - разработка целостного учения о биосфере, живом веществе, организующем земную оболочку, и об эволюции биосферы в ноосферу. Для ноосферы человеческий разум и деятельность, научная мысль становятся определяющими факторами развития, приобретающими глобальную мощь. Идеи В.И. Вернадского оказали глубокое влияние на формирование современного экологического сознания.
Современные исследователи науки признают выдающееся значение квантовой физики для развития нового научного мировоззрения и для процесса технологизации науки. Надо отметить, что вклад в разработку квантовой физики внесли многие ученые, в том числе и отечественные. Упомянем здесь труды Л.Д. Ландау, который разработал идею комбинированной четности, создал теорию колебаний электронной плазмы, теорию ферми-жидкости, теорию сверхпроводимости.
Отечественная наука в свое время опередила мировую науку в новом революционном направлении, которое связано с соединением фундаментальной физики и технологии. Организацию подготовки научных кадров нового типа начинал А.Ф. Иоффе, создав физико-технический институт. Он же является одним из основоположников современной микроэлектроники и создателем науки о полупроводниках. Их открытие справедливо относится к числу крупнейших в физике XX столетия.
Усилиями отечественных ученых были совершены прорывы в области физики низких температур, в области сверхпроводимости и сверхтекучести, в области исследования и разработки мазеров и лазеров (П.Л. Капица, В.Л. Гинзбург, М.Г. Басов, А.Н. Прохоров). Ж.И. Алферов создал направление, которое определяется как физика полупроводниковых гетероструктур. На базе его разработок возникло одно из главных направлений современного научно-технического развития. Гетероструктуры позволили вести изучение квантовых свойств твердых тел. С их помощью прокладывается путь к созданию новых поколений быстродействующей электроники.
Отечественная наука сумела занять также важные позиции в области кибернетики. Упомянем здесь работы А.И. Мальцева, создавшего теорию алгоритмов. Весом вклад отечественных ученых в создание современных электронно-вычислительных машин, в разработку архитектурных принципов построения вычислительных комплексов (Б.А. Бабаян и др.). В свое время были разработаны оригинальные отечественные компьютеры БЭСМ-6, «Эльбрус», «Мир-2», вполне соответствующие мировому уровню.
Все сказанное не исчерпывает успехов отечественной науки. Ее революционный подъем мог бы продолжаться. Однако в последние полтора десятилетия выявилось, что революционные подвижки в науке зависят не только от ума и таланта, энергии и организационных усилий самих ученых.
Сегодня взрыв научного творчества вплотную связан с разнообразным ресурсным обеспечением науки. Существуют некоторые своеобразные критические суммы, которые необходимы для эффективного научного творчества. Это, например, численность занятых в науке, численность активно действующих в области научных исследований, объем востребованной научной продукции, удельные финансовые и материальные затраты на фундаментальные и прикладные разработки и пр. Сегодня деятели науки старших поколений с ностальгией вспоминают мощный рывок отечественной науки, совершенный в 50-60-70-х гг. XX в. Тогда ресурсное обеспечение науки было на высоте. Так, темпы прироста затрат на науку в те времена составляли 10-12 процентов в год. Численность научных кадров росла на 7-8 процентов ежегодно. В 1990 г. в науке и в научном обслуживании в нашей стране было занято 4,5 млн. человек. Научных работников и инженеров насчитывалось почти 1,7 млн. человек. Численная масса ученых у нас составляла 32,4 процента от численности ученых в мире, тогда как доля американских ученых составляла 17,8 процента. Тем не менее продуктивность отечественной науки хотя и была приличной, но не наивысшей в мире. Достаточно отметить тот факт, что наша наука дала в тот период около десятка нобелевских лауреатов, а американская - на порядок больше.
Не стоит забывать и о том, что наполнение ресурсами нашей науки шло в ту эпоху, когда велась бурная гонка ядерных и обычных вооружений. Поворот в военно-политической доктрине современной России в сторону сокращения военных расходов привел к резкому спаду в финансовом и прочем обеспечении науки.
Опыт двадцатого столетия показал, что современные научные революции осуществляются в странах передовой цивилизации. Сегодня это страны так называемой четвертой технологической группы; в них формируются общества, основанные на знаниях, и здесь востребованы высокие технологии. К тому же выявилась многополюсная связь науки с обществом: с политикой, экономикой, культурой, образованием, промышленностью и техникой. Революционные взрывы в этих сферах пробуждают и стимулируют революционное развитие науки. И напротив, кризисные явления в общественном организме ведут к кризису науки.
Очевидно, что невозможна замкнутая автономия для науки. Поэтому интерналистский подход к исследованию научных революций недостаточен. В особенности этот тезис справедлив для отечественной науки. Чтобы российская наука могла включиться в новый виток глобальной научной революции, необходима целая совокупность условий. Например, справедливо высказывается требование увеличения доли госрасходов на научные разработки. Сегодня они стали весьма незначительными, и от этого страдает, прежде всего, фундаментальная наука. Однако положительного решения задачи пока не просматривается. С другой стороны, назрела задача активного включения отечественной науки в рыночные отношения. Сегодня фронт развития науки стал полем освоения рынка интеллектуальной деятельности. Его главные субъекты: США, Евросоюз, Япония, Китай. Сектор российской науки здесь не очень большой. Чтобы его расширять, отечественным научным структурам придется включить всю мощь научного интеллекта, организуя различные факторы для достижения режима самодостаточности науки в России.
Здесь необходимо эффективное лоббирование интересов науки в финансовых коридорах власти. Но требуется также переход на рельсы самообеспечения. Если рассчитывать только на спонсорство, благотворительность и меценатство, то преодолеть убогое существование науки и ученых вряд ли возможно. Известно, что прикладная наука оказалась способной к подобному самообеспечению. Только объемы и масштабы ее динамического развитии недостаточны. К тому же часто используются старые фундаментальные достижения. В этой ситуации актуальным становится поиск новых организационных решений, способных объединить фундаментальные и прикладные исследования. Стабильные академические подразделения зачастую не могут включиться в подобные инновационные процессы, они опасаются раствориться в прикладной науке. Значит, надо идти от проблем и задач, которые рождаются в условиях интеллектуального рынка и для решения которых потребуются силы представителей как фундаментальной, так и прикладной науки.
Ситуация для российской науки совсем не безнадежная. Стоит обратить внимание на то, что доля новых знаний, внедряемых в современные технологии и в подготовку кадров в передовых странах, согласно расчетам С.Ю. Глазьева составляет 70-85 процентов. Показательно также, что доля НИОКР в инвестиционных расходах превышает долю расходов на строительство, т.е. существует мировая потребность в науке, и этим необходимо научиться пользоваться. Конечно, предстоит громадная работа по модернизации и структурной перестройке науки и научной деятельности. Потребуется также новая макроэкономическая среда. Надо возбудить новые мотивы научного поведения субъектов науки. Полезно провести специальные исследования по выявлению оставшихся у российской науки конкурентных преимуществ и предъявить их рыночному сообществу.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Баранов Г.В., Левин В.Г., Казанцева С.Г. Философия науки: Учеб. пособ. Самара: Изд-во СамГТУ, 2006. 272 с.
2. Дандон Э. Инновации: Как определять тенденции и извлекать выгоду / Пер. с англ. М.: Вершина, 2006.304 с.
3. Инновации. Наука. Образование. Самара: Изд-во СамГТУ, 2006. 138 с.
4. Креативное мышление в бизнесе / Пер. с англ. М.: Альпина Бизнес Букс, 2006. 228 с.
5. Меерович М.И., Шрагина Л.И. Теория решения изобретательских задач. Минск: Харвест, 2003. 428 с.
6. Поппер К.Р. Предположения и опровержения: Рост научного знания. М.: ООО «Издательство ACT». 2004. 638.
7. Проблемы творчества: Сб. докл. Самара: Изд-во НТЦ. 2004. 43 с.
8. Рузавин Г.И. Методология научного познания. М.: ЮНИТИ-ДАНА, 2005. 287 с.
9. Сачков Ю.В. Научный метод. Вопросы и развитие. М: Едиториал УРСС, 2003. 160 с.
10. Scietific discovery, logic and rationality. Dordrecht, 1980.