Кузнецов Дмитрий Юрьевич : другие произведения.

Mathematical problems

Самиздат: [Регистрация] [Найти] [Рейтинги] [Обсуждения] [Новинки] [Обзоры] [Помощь|Техвопросы]
Ссылки:
Школа кожевенного мастерства: сумки, ремни своими руками
 Ваша оценка:
  • Аннотация:
    Heavy excersises in Mathematial Analysis

Русская версия здесь: http://samlib.ru/k/kuznecow_d_j/mathematicalproblemsr.shtml
WARNING! Long deal with the problems below may affect your ability to enjoy simple mathematical excersises.

Prove the Theorem A below:

Let t be entire 1-periodic function, different from a constant, and
J(z)=z+t(z) for all complex z, and
let S be set of complex numbers with real part within segment [0,1].
Then: For any complex number p, except, perhaps, one value, in the domain S, there exist solution u of equation J(u)=p,
and this solution is not unique.


Prove the Theorem B below:

Let C be set of complex numbers z such that either |Im(z)|>0 or z>-2.
Then: There exist function F holomorphic on C such that
F(z*)=F(z)* for all z from C and
exp(F(z))=F(z+1) for all z from C
and F(0)=1.
There exist only one such function.


Make the Construction A below:

Let C be set of complex numbers such that Im(z)>0 or z>1.
Construct some function h holomorphic on C such that
h(z*)=h(z)* for all z from C and
h(h(z))=z! for all z from C, and
The growth of h(z) at large |z| is slower than exponential.
Suggest a way for evaluation of such a function.


Make the Construction B below:

For a given d>0, let B be set of complex numbers z such that at least one of the two conditions holds:
|z| < 1 or { Re(z)>0 , |Im(z)|<d } .
Let C be set of all complex numbers that do not belong to B.
Construct some entire function F, such that F(0)=1 and |F(z)|<|z| for all z in C.
Suggest a way for evaluation of such a function.



Entire function with logarithmic asymptotic
Construct entire function that approach logarithm at large values of the imaginary part of its argument and/or at large positive values of the real part.

External links:
http://www.tanyakhovanova.com/coffins.html Tanya Khovanova. "Coffins". Here is a collection of difficult math problems with elegant solutions that possess a unique history. (2008)
Related texts:
http://samlib.ru/k/kuznecow_d_j/science.shtml Science
http://samlib.ru/k/kuznecow_d_j/mathematics Mathematics, kernel of science
http://samlib.ru/k/kuznecow_d_j/physics.shtml Physics, science based on mathemaitcs
http://samlib.ru/k/kuznecow_d_j/mathematicalproblemsr.shtml Русская версия этого текста

 Ваша оценка:

Связаться с программистом сайта.

Новые книги авторов СИ, вышедшие из печати:
О.Болдырева "Крадуш. Чужие души" М.Николаев "Вторжение на Землю"

Как попасть в этoт список

Кожевенное мастерство | Сайт "Художники" | Доска об'явлений "Книги"