Современные яды: Дозы, действие, последствия (пер. Мария Леонидовна Кульнева) - (epub) - (mobi) - Алан Колок
Алан Колок
Современные яды: Дозы, действие, последствия
Переводчик Мария Кульнева
* * *
Предисловие
Токсикология – междисциплинарная область исследований. Другие предметы, например анатомию, можно изучать более или менее как самостоятельную дисциплину, не привлекая большого количества сведений из других научных сфер. Студентам можно рассказывать о строении и расположении костей, мышц или внутренних органов, не упоминая, к примеру, о химическом составе скелета или биомеханических основах мышечной активности. Токсикология же изучает вредное воздействие различных химических веществ на живые организмы, поэтому ее нельзя причислить исключительно к сфере биологии или химии. Она скорее представляет собой пересечение этих двух дисциплин.
Кроме того, токсикология – прикладная наука, отражающая изменения в окружающей среде и потребностях общества. С начала своего формирования, то есть уже более 500 лет, токсикология неразрывно связана с медициной. Врачи, сталкивавшиеся с ужасными последствиями отравлений, пытались понять механизмы действия яда на человека, в результате чего были сформулированы два общих принципа: воздействие яда зависит от дозы, и природа химических веществ раскрывается в их структуре. На ранних этапах развития токсикологии происходил постоянный обмен идеями с ее более милосердной сестрой – фармакологией, изучавшей полезное действие лекарственных веществ на организм. Действительно, эти две дисциплины очень прочно переплетены друг с другом; терапевтический эффект многих лекарств может обратиться во вред, если превысить дозировку или время воздействия.
Несмотря на историческую связь токсикологии с медициной, меняющаяся природа взаимодействий человеческого общества с химикатами изменила и контекст понятия токсичности. В старину воздействие ядов на людей было, как правило, индивидуальным. Контакт с ядовитым плющом, поедание несъедобных грибов или укус змеи могли привести к тяжелым последствиям или даже смерти; однако это происходило с отдельными людьми в отдельные моменты времени. Даже ранние исторические опыты в области металлургии и иных отраслей промышленности могли повлиять лишь на ограниченное число людей, работавших на небольших и относительно изолированных производствах. На протяжении долгих веков воздействие ядов было скорее личной проблемой, нежели общественной.
Все изменилось с наступлением индустриальной революции. С развитием тяжелой промышленности, в частности металлургии, и увеличением добычи полезных ископаемых началось масштабное загрязнение почв, воды и воздуха. Теперь воздействию вредных химических веществ подвергались уже не отдельные люди, а целые сообщества. Токсикология объединилась с эпидемиологией – разделом медицины, изучающим возникновение и распространение болезней в определенных человеческих популяциях. Начались исследования, призванные оценить опасность различных загрязняющих веществ для человеческого общества.
Химическая революция, более поздний отпрыск революции промышленной, породила огромное разнообразие химических веществ, попадающих в окружающую среду, и еще более изменила лицо современной токсикологии. Изначально воздействующие на человека химикаты имели природное происхождение или являлись относительно простыми видоизменениями существовавших в природе соединений, получавшимися, к примеру, при обогащении руд или сжигании древесного или ископаемого топлива. Начавшееся в начале XX в. развитие промышленного органического синтеза обогатило мир токсикологии новыми группами веществ, которые, как оказалось, ведут себя совершенно иначе, чем природные соединения. Вместо того чтобы быстро разлагаться в естественной среде, они сохраняются неизменными – в некоторых случаях на протяжении многих десятков лет. Более того, эти вещества стали обнаруживать в тканях различных животных в самых неожиданных местах.
С ростом объема и разнообразия загрязняющих веществ стала меняться и сама природа токсической реакции. Когда-то подавляющее большинство эффектов, которые оказывали на человека яды, – к примеру, при укусе змеи или пчелы, – были острыми и быстротечными, однако в современную эпоху существует все больше примеров воздействия долговременного и проявляющегося далеко не сразу. Такие загрязнители, наряду с лекарствами и средствами личной гигиены, стали действовать как непредусмотренные сигналы для клеток организма, нарушая их взаимодействие. Это приводит к таким неприятным последствиям, как канцерогенез, репродуктивная дисфункция, нарушения внутриутробного развития. Хуже всего то, что эти последствия проявляются спустя продолжительное время после того, как химический сигнал исчезает, – иногда даже у детей или внуков человека, подвергшегося воздействию яда. Когда ущерб становится очевидным, химического «взломщика» уже и след простыл.
Тройная угроза современных ядов – их глобальное распространение, огромное разнообразие и длительное неявное воздействие с отсроченными последствиями – сильно усложняет ситуацию в сфере токсикологических исследований. Поэтому нет ничего удивительного в том, что природа объектов исследований современной токсикологии не всегда ясна не только неспециалистам или студентам, но и серьезным ученым. Зачастую возникает неверное понимание метаболического пути, транспорта, абсорбции, выделения и биологической активности токсичных веществ.
Сложность понимания токсикологии, в силу описанных выше причин, стала поводом к написанию этой книги. Моя цель – внести немного ясности в существующий хаос и представить современные достижения в этой сфере таким образом, чтобы они были понятны непрофессионалу. Вероятно, кому-то материал книги покажется чересчур упрощенным, однако я не стремился создать исчерпывающий учебник по токсичным веществам, а всего лишь хотел познакомить широкий круг читателей с некоторыми тонкостями и нюансами современной токсикологии.
Благодарности
Эта книга посвящается трем группам людей. Первая – мои коллеги, которые помогали в создании книги: Шеннон Бартелт-Хант, Шерри Чирек, Стивен Ресс, Кристин Кутукэш, Пол Дэвис, Элинор Роган, Филип Смит, Джереми Уайт и Хейко Шенфусс. Спасибо вам за редакторскую помощь и комментарии. Вторая – мой брат, сестра и мать, которые вежливо интересовались у меня, когда же книга будет окончена? Да, дорогая моя семья, после долгих лет этот момент наступил. И наконец, спасибо за терпение моим жене и сыну, Венди и Джареду. Они лучше других знают, что я имею в виду.
Глава 1
Все зависит от дозы
Все есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным.
Парацельс
Когда я учился в начальной школе, наши разговоры на игровой площадке нередко приобретали фаталистический характер. Быть может, это объяснялось эпохой холодной войны, но я хорошо помню, как мы с товарищами болтали о химии и смерти: «Если слишком глубоко дышать, можно умереть!», «Если выпить очень много воды, то умрешь!»
Сегодня людей волнует в основном не летальное количество этих относительно безобидных субстанций, а содержание в нашей пище, воде и воздухе вредных загрязняющих веществ. Однако, несмотря на недостаток образования, я и мои сверстники были не так уж далеки от истины. Мы тогда ничего не знали о токсинах, но по сути повторяли мысли Парацельса, врача XVI в. Его недаром считают отцом токсикологии, потому что именно Парацельс сформулировал первый и главный догмат этой науки – идею о том, что ядовитость вещества зависит от дозировки: «Все есть яд и ничто не лишено ядовитости; одна лишь доза делает яд незаметным». Иными словами, даже такое вроде бы совершенно безвредное вещество, как вода, будучи употреблено в избыточном количестве, может оказаться не менее опасным, чем всем известные яды, например мышьяк.
Революционная идея Парацельса отражает связь дозы с реакцией: в большинстве случаев чем выше доза, тем сильнее негативная (токсическая) реакция. Эта очевидная концепция создала тематическую платформу, на которой строится современная регуляторная токсикология. К тому же упомянутая связь куда интереснее, чем кажется на первый взгляд, так как и в дозировке, и в реакциях существует множество нюансов.
Когда химическое вещество, токсичное или безвредное, контактирует с организмом, оно оказывает на него определенное воздействие. Дозой воздействия, или экспозиционной дозой, называется количество вещества, которое подействовало на организм. Это количество можно измерить различными прямыми или косвенными методами. Для стандартных химикатов, которые человек принимает намеренно (например, лекарств), существует прямой путь воздействия – чаще всего оральный или инъекционный. Для такого типа воздействия доза обычно определяется через массу (в граммах или миллиграммах) вещества, назначаемого для приема. Например, обычная таблетка аспирина, одного из самых распространенных лекарственных средств, содержит 325 мг активного ингредиента – ацетилсалициловой кислоты. В этой таблетке также содержится ряд инертных химических веществ (наполнителей), но дозировка определяется именно количеством активного ингредиента. Точно так же выражается дозировка и для инъекционных препаратов. Например, эпинефриновый инъектор, широко используемый людьми, страдающими от различных пищевых аллергий, позволяет ввести дозу в 0,3 мг эпинефрина, несмотря на то что в растворе содержатся и другие вещества.
В приведенных примерах путь воздействия прямой и доза легко определяема, но что делать в тех случаях, когда воздействие оказывается непрямым и непреднамеренным? Это может происходить, если человек, к примеру, съел рыбу, которая прокачивала через свои жабры загрязненную воду, или же он является пассивным курильщиком. В таких случаях количество потребленного вещества сложно точно измерить. Поэтому проще определить не экспозиционную дозу, а концентрацию вещества в среде (в воде, которая проходит через жабры рыбы, или в воздухе, которым дышит животное или человек).
Вне зависимости от прямого или косвенного источника воздействия реакция животного (в том числе человека) на воздействие химического вещества может быть дискретной или непрерывной. Гибель организма – крайний случай дискретной реакции, в котором возможны лишь два состояния: жизнь или смерть. Как бы ни был печален факт смерти, она дает токсикологам очень ценный исследовательский материал. В других же случаях возможно весьма существенное разнообразие реакций на воздействие токсина. В качестве классического примера непрерывной реакции можно привести нарушения в когнитивной сфере в результате воздействия на мозг алкоголя. Реакция на алкоголь не происходит по типу «все или ничего»; она усиливается с увеличением дозы. То же самое можно сказать и о других типах нарушений, вызванных токсинами, например экспрессии генов или активности белков.
Что интересно, ни способ получения дозы воздействия – прямой или косвенный, – ни метод измерения реакции – дискретной или непрерывной, – не влияет на общий принцип связи между дозировкой и реакцией. В подавляющем большинстве случаев форма кривой этого взаимодействия остается неизменной вне зависимости от того, как представлены данные о дозе и реакции.
Количественная оценка зависимости реакции от дозы
Зависимость реакции от дозы – очень полезный показатель, часто используемый регуляторными организациями. Стандартный подход к тестированию новых веществ или веществ, используемых в новом качестве, начинается именно с выяснения этого соотношения. Обычно на первой стадии определения токсичности проводится оценка способности вещества давать дискретный результат – а именно смерть – в популяции лабораторных животных, к примеру мышей.
Кривая зависимости реакции от дозы на самом деле описывает не смерть, а смертность. Смерть – это реакция отдельного организма, и здесь очевидно, что организм может находиться лишь в одном из двух состояний: он может быть либо жив, либо мертв. Смертность же – реакция популяции организмов. Уровень смертности – показатель, отражающий, какая часть популяции гибнет в результате воздействия токсина. В качестве графической иллюстрации смертности в группе животных, подвергшихся воздействию одинаковых доз токсичного вещества, мы используем дискретную кривую зависимости. В одной крайней точке токсикологической кривой все животные, подвергшиеся воздействию малых доз, выживают (уровень смертности равен нулю), а в противоположной – все животные, подвергшиеся воздействию высоких доз, гибнут (уровень смертности 100 %).
Между этими крайностями полной выживаемости и полной смертности зависимость реакции от дозы становится более интересной. В подавляющем большинстве случаев она описывается характерной S-образной, или сигмоидальной, кривой. При низких дозировках токсичного вещества постепенное повышение его концентрации не приводит к сильному увеличению смертности. При средних дозировках смертность начинает резко возрастать с повышением концентрации, а при высоких дозах разница в уровне смертности при увеличении дозы снова становится минимальной.
Важный параметр, который помогает прояснить зависимость – это точка перегиба кривой. В нижней части кривой повышение дозировки ведет не только к увеличению общего числа умерших животных, но и к увеличению количества животных, умерших с каждой новой дозой. Иными словами, угол наклона кривой при переходе от одной концентрации вещества к следующей продолжает увеличиваться, пока не достигнет максимума в точке перегиба. Дальнейшее повышение дозы действующего вещества продолжает приводить к усилению биологического ответа, но скорость, с которой ответ растет, начинает уменьшаться с каждым последующим повышением дозы. Точка перегиба всегда находится в средней части кривой, там, где при тесте на летальную токсичность наблюдается 50 %-ная смертность, и, как мы увидим далее, эта точка имеет большое значение при токсикологическом тестировании веществ.
Переход от экспериментальных данных к применимой на практике зависимости реакции от дозы (которая позволяла бы количественно определить интересующие точки на кривой) оказывается сложнее, чем кажется на первый взгляд. Для того чтобы заполнить пробелы между относительно немногочисленными экспериментально определенными точками и получить непрерывную кривую, необходимо найти математическое уравнение, описывающее эту зависимость. Когда такое уравнение найдено, с его помощью можно определить значения для любой точки кривой, а не только для тех, где имеются экспериментальные данные.
На практике, для того чтобы выявить зависимость реакции от дозы того или иного химического вещества, нужно преодолеть существенные трудности, связанные с методикой экспериментов. Например, если токсичное вещество является новым и ранее никогда не подвергалось тестированию, то исследователь вынужден «стрелять вслепую» и экспериментально устанавливать зависимость в очень широком диапазоне концентраций. Часто этот диапазон широк настолько, что ось х на координатной сетке выглядит не линейной (то есть 1, 2, 3 и т. д.), а скорее логарифмической (то есть 1, 10, 100 и т. д.). В этом случае весьма вероятно, что в процессе эксперимента в одной или более группах животных уровень смертности будет нулевым из-за слишком малых концентраций, а одна или более экспериментальных дозировок приведут к 100 %-ной смертности. Важно, что эти дозировки не помогут выстроить кривую зависимости. После исключения их из анализа количество оставшихся точек, которые можно использовать для построения S-образной кривой, может оказаться слишком маленьким, и достоверность результатов тем самым серьезно снизится.
К счастью, существуют математические методы, которые позволяют обойти ряд сложностей. Пробит-анализ, к примеру, позволяет производить такие математические преобразования, в результате которых можно превратить сигмоидальную кривую в прямую линию. Как известно всем, кто изучал евклидову геометрию, кратчайшее расстояние между двумя точками – это прямая, и наоборот, любую прямую можно построить по двум точкам. Поэтому с помощью пробит-анализа можно точно оценить всю кривую зависимости реакции от дозы, имея данные всего лишь в двух точках, лежащих где-то между нулевой и 100 %-ной смертностью. Более того, если зависимость описывается линейным уравнением (y = угол наклона × x + свободный член), можно легко определить значение любой точки, подставив несколько цифр в это простое уравнение.
Танцы вдоль кривой
Прелесть линейной зависимости реакции от дозы заключается в том, что она дает много предварительной информации о взаимодействии животного с химическим веществом. Например, угол наклона прямой сообщает нам об эффективности токсичного вещества, то есть его способности вызывать биологическую реакцию. С увеличением угла наклона эффективность также растет. Более того, если эффективности двух веществ оказываются сходными, то на основании зависимости реакции от дозы можно определить некоторые полезные точки, дающие при сокращении одно число, с помощью которого можно проводить сравнение токсичности различных веществ.
А теперь вернемся к точке перегиба. Эта точка в токсикологии и фармакологии известна как ЛД50, доза, при воздействии которой гибнет 50 % популяции животных. Эту точку можно определить и в тех случаях, когда животные подвергаются косвенному воздействию вещества (при содержании токсичного компонента в воздухе для животных, дышащих легкими, или в воде, для тех, кто дышит жабрами), но тогда она обозначается, как ЛК50 (концентрация вещества в среде, при которой 50 % организмов погибают). Эти точки перегиба дают ученым практический числовой индекс, с помощью которого можно сравнивать токсичность различных веществ.
Вторая точка, которую можно выявить из зависимости реакции от дозы, – это пороговая концентрация. Пороговая концентрация – та, при которой вероятность негативного воздействия (например, один случай заболевания на миллион человек) достаточна низка и считается допустимой. Интересно то, что, хотя пороговую дозу легко определить по зависимости реакции от дозы при условии наличия соглашения о приемлемом уровне негативного воздействия, допустимая вероятность этого негативного воздействия устанавливается не наукой, а на общественно-политическом уровне. Этот вопрос мы обсудим подробнее в главе 14.
Третья важная деталь, касающаяся пороговой дозы, состоит в том, что эта доза является не столько эмпирической, сколько математической. Иными словами, пороговая доза не ограничивается решениями ученого, проводящего тестирование. Если он, к примеру, вводил крысам какое-то вещество в пяти различных концентрациях (0,01, 0,1, 1, 10 и 100 мг на кг массы тела), то пороговая доза вовсе не обязательно будет одной из них. Прямая линия, которую мы получаем при пробит-анализе зависимости реакции от дозы, описывает взаимоотношения не просто нескольких точек на линии, а всех составляющих ее точек. Однако с двумя другими показателями, NOEC и LOEC, дело обстоит иначе. Эти показатели ранее часто использовались для описания химической безопасности продукта, но в настоящее время впали в некоторую немилость. NOEC – это максимальная из измеренных концентраций на кривой, при которой не наблюдается видимого положительного воздействия на организмы, а LOEC – минимальная из измеренных концентраций, при которой выявляется негативное биологическое воздействие химического вещества. Проблема в том, что эти показатели по своей сути необъективны. В то время как пороговая доза – это величина, выведенная математически с использованием всех точек кривой зависимости реакции от дозы, значения NOEC и LOEC связаны только с теми точками кривой, для которых были получены эмпирические данные. Поэтому общее число возможных значений для этих точек лимитируется количеством вариантов дозировок, выбранных экспериментатором. Например, если ученый вводил крысам вещество в пяти различных концентрациях (0,01, 0,1, 1, 10 и 100 мг на кг массы тела), то значения NOEC и LOEC могут соответствовать лишь каким-либо из этих пяти вариантов. Поэтому результаты очень сильно зависят от прихоти экспериментатора и весьма ограничены, тогда как при математическом вычислении они куда более точны и теоретически могут быть абсолютно любыми.
Когда какая-либо правительственная структура разрабатывает стандарты химической безопасности, считающаяся безопасной дозировка практически всегда оказывается ниже, чем реальная пороговая концентрация, рассчитанная на основании уравнения зависимости реакции от дозы. Это делается по чисто практическим причинам, так как токсикологическое тестирование обычно проводится на лабораторных грызунах (мышах и крысах), и его результаты экстраполируются на человека. Грызуны могут быть более чувствительны или менее чувствительны, чем люди, к тем или иным химическим веществам, поэтому максимально допустимый уровень загрязнения из соображений безопасности уменьшается на порядок по сравнению с экспериментальным. Кроме фактора возможных различий в реакции между биологическими видами, во внимание принимается также повышенный риск воздействия того или иного вещества на особо чувствительные группы людей (дети, пожилые и лица с нарушениями иммунной системы).
Исключения
Но во всех ли случаях применима S-образная кривая? Возьмем, к примеру, витамин А. Это вещество представляет собой смесь компонентов, в том числе ретинола, ретиналя и других сходных по структуре каротиноидов. Недостаток витамина А в рационе может вызывать нарушения зрения, особенно при недостатке освещения. Однако витамин А – жирорастворимое вещество, которое не так быстро выводится из организма, как водорастворимые витамины, например витамин С. Поэтому, если употребить слишком много витамина А, возникает риск отравления. Постоянно повышенный уровень витамина А вреден для организма, особенно для развития органов плода. В случае с этим веществом кривая зависимости реакции от дозы будет не сигмоидальной. Она, скорее, напоминает чашу, где негативный эффект наблюдается как при низких, так и при высоких дозировках. В данном случае влияние дозировки будет двояким: при высоких концентрациях витамина А преобладает негативное воздействие, и чем ниже будет его концентрация, тем лучше. Однако в низких концентрациях витамин А действует как микроэлемент, дефицит которого также наносит организму вред, и в этом случае его концентрацию нужно увеличить.
На самом деле подобный дефицит нельзя считать истинно токсическим воздействием, но есть примеры и других веществ, которые оказывают на организм негативное воздействие как в низких, так и в высоких концентрациях. Прекрасный пример такого вещества – это 17-бета-эстрадиол. При высоких концентрациях это вещество обладает канцерогенным эффектом и очень токсично. Но при уменьшении дозы зависимость начинает приближаться к классической сигмоидальной кривой. Дозы ниже пороговых не увеличивают риск развития рака. Однако в концентрации намного ниже пороговой этот половой гормон действует так же, как клеточный сигнал, влияющий в том числе и на эмбриональное развитие у позвоночных животных. Хотя эстрадиол необходим для развития как мужских, так и женских особей, слишком высокий его уровень в определенные моменты может быть токсичным, в том числе приводить к развитию у плода мужского пола ряда женских признаков. Именно это является причиной необычной морфологии репродуктивных органов у некоторых животных, например развития женских фолликулов в ткани мужских семенников. (В последующих главах мы еще вернемся к влиянию различных химических веществ на внутриутробное развитие.)
Наш взгляд на токсичные вещества определяется идеями Парацельса. Вероятно, для подавляющего большинства токсинов все действительно зависит от дозы. Этот первый закон токсикологии породил огромное количество исследований и правовых актов, касающихся безопасности. В мире современных ядов многие виды взаимодействий между молекулой и организмом определяются именно этим простым, но элегантным принципом.
Глава 2
Природа химических веществ
Некоторые вещи по сути своей никак не могут сочетаться – например, масло и вода, апельсиновый сок и зубная паста.
Джим Батчер
Второе правило токсикологии помогает нам понять, почему одни химические вещества легко выводятся из организма, а другие – нет. Оно же объясняет нам, почему разные яды действуют по-разному. Это правило первым сформулировал Амбруаз Паре, французский хирург XVI в., который сказал, что «яд… убивает определенным свойством, противоположным нашей человеческой натуре». Иными словами, конкретное действие вещества зависит от свойственной ему химической природы.
Эта идея на первый взгляд может показаться очень простой, но давайте попробуем разобраться, что такое «химическая природа» вещества? Нам известно, что эффекты, оказываемые на организм различными химическими веществами, зависят от структуры их молекул. Токсичность по определению проявляется на молекулярном уровне, потому что действие яда определяется тем, как его конкретные молекулы взаимодействуют с конкретными биологическими мишенями в организме. Эти биологические мишени могут быть общими, как, например, фосфолипиды – тонкий слой жиров, входящих с состав всех клеточных оболочек, или очень узкими – например, рецептор к какому-либо нейротрансмиттеру, который может быть навсегда заблокирован по-особому устроенной молекулой пестицида, подходящей именно к данному рецептору. Таким образом, природа токсичного вещества – это его молекулярная структура, так как именно она определяет его химическую активность.
Для многих токсичных веществ, особенно для тех «специалистов», что связываются со строго определенными клеточными рецепторами, кажется вполне логичным, что за воздействие несет ответственность именно трехмерная структура молекул токсикантов. Если токсичное вещество – это ключ, то рецепторная молекула – замок, и для многих токсичных веществ изменения химической структуры молекул (аналогично различиям в форме бородки ключа) могут приводить к изменению токсичности. Более того, если нам известен механизм токсического воздействия вещества на организм, можно сделать вывод, что молекулы со сходной структурой могут оказывать на организмы сходное воздействие. Зависимость активности от структуры – корреляция между структурой молекул химического вещества и его биологической активностью – важный принцип, который можно вывести из трудов Паре.
Зависимость активности от структуры помогает понять, почему разные члены некоторых небольших групп токсинов направленного действия (тех самых «специалистов») действуют на организм одинаково. Но давайте попробуем разобраться в общих закономерностях строения химических веществ. Если нарисовать все известные науке химические вещества на воображаемой школьной доске (доска понадобится о-о-очень большая!), их можно было бы разделить на многочисленные небольшие родственные группы: на одной части доски окажутся сахара, на другой – металлы, на третьей – диоксины и т. д. Какие же критерии можно использовать, чтобы объединить эти группы в более крупные подразделения?
Есть два весьма практичных и простых способа разделения всех веществ на нашей доске. Во-первых, можно выделить органические и неорганические молекулы – то есть, попросту говоря, отделить вещества, в которых есть углерод, от тех, в которых углерода нет. В общем можно сказать, что углеродсодержащие вещества могут быть химически модифицированы в результате процессов, происходящих в живых организмах, и считаются основой жизни. Все необходимые для существования живых организмов молекулы – сахара, жиры, белки, ДНК и РНК, липидная мембрана и т. д. – являются органическими, так как содержат углерод.
Второй способ классификации химических веществ основан на их относительной растворимости; иными словами, вещества могут быть водо– или жирорастворимыми. В отличие от органической или неорганической природы, которая определена однозначно, относительная растворимость веществ может варьироваться – от высокой растворимости в липидах, или жирах, до высокой растворимости в воде. Тем не менее разделение веществ на водо– и жирорастворимые весьма информативно, так как позволяет многое объяснить.
Отличие водорастворимости от жирорастворимости можно легко понять, если представить себе процесс приготовления заправки для салата. Для традиционного итальянского салатного соуса нужно взять воду, оливковое масло и специи, соединить их в емкости и тщательно встряхнуть. Получившийся раствор на самом деле не раствор, а эмульсия – смесь веществ, которые не могут полностью соединиться. Со временем эмульгированные жидкости разделятся, и слой оливкового масла окажется поверх слоя воды. Теперь разберемся со специями, которые используются в заправке для салата: на молекулярном уровне некоторые из них (поваренная соль, сахара и т. д.) растворяются в первую очередь в воде, а не в масле. Другие (например, ванилин, экстракт мяты или винтергреновый экстракт – ну ладно, последний не назовешь традиционным компонентом салата) растворяются в оливковом масле, а растворить их в воде нельзя.
А теперь давайте посмотрим, что будет, если мы добавим к смеси воды и масла какое-нибудь из веществ, расположенных на нашей доске. Если хорошенько встряхнуть сосуд, а потом дать смеси отстояться и разделиться, вещество растворится в одном из слоев – в воде или масле – или не растворится вообще и окажется в виде кристаллов на дне сосуда.
На основании этих двух принципов разделения химических веществ на группы любое вещество можно отнести к одной из пяти категорий: нерастворимые вещества, жирорастворимые неорганические вещества, жирорастворимые органические вещества, водорастворимые неорганические вещества и водорастворимые органические вещества. Молекулы нерастворимых веществ, как органических, так и неорганических, связаны очень прочными химическими связями, которые трудно разорвать, поэтому они и не переходят в раствор. Если рассмотреть этот факт более пристально, становится понятно, что если вещество нерастворимо ни в воде, ни в липидах, значит, оно не может быть усвоено организмом, и, следовательно, не может быть токсично. Так что с точки зрения токсикологии нерастворимые вещества не представляют большого интереса.
Таким образом, классификацию токсичных веществ можно свести к четырем категориям: жиро– и водорастворимые неорганические вещества и жиро– и водорастворимые органические вещества. Список можно еще сократить, так как жирорастворимые неорганические вещества с точки зрения токсикологии также не слишком интересны[1]. Во многих смыслах разделение веществ на водо– и жирорастворимые не менее важно, чем их разделение на органические и неорганические. Чтобы понять это, необходимо получше приглядеться к месту, где химия буквально сталкивается с биологией: к клеточной мембране.
Клеточная мембрана
Прежде чем обратиться к теме абсорбции веществ из среды организмом, давайте вспомним, как устроена живая клетка. Когда я читаю курс общей биологии студентам непрофильных специальностей, я прошу их взять лист бумаги и за отведенное время нарисовать клетку. Тут я хитрю, потому что без предупреждения даю им всего одну-две секунды, и, едва они успевают начать рисовать, кричу: «Время вышло!» За это очень короткое время большинство рисуют одно и то же – замкнутый круг. По сути, то, что они рисуют, – это клеточная мембрана. Хотя для жизнедеятельности клетки, несомненно, важны ядро, митохондрии, аппарат Гольджи и прочие органоиды, именно клеточная мембрана отделяет внешнюю среду от внутренней, и именно ее первым делом рисуют практически все, кому дается задание нарисовать клетку за несколько секунд.
Клеточная мембрана состоит из двойного слоя фосфолипидов. Во внешнем слое молекулы расположены так, что полярные головки молекул смотрят наружу, а неполярные хвосты направлены в сторону цитоплазмы. За первым слоем следует небольшая щель, а затем – внутренний слой фосфолипидов. В этом слое хвосты молекул направлены наружу, то есть к таким же хвостам внешнего слоя, а головки – внутрь клетки, в цитоплазму. Таким образом, с обеих сторон липидного слоя находятся полярные головки, а между ними – неполярные хвосты.
Для этой структуры полярные головки имеют принципиальное значение. Каждая из них имеет положительно и отрицательно заряженные стороны. Так как одинаковые заряды отталкиваются, а противоположные – притягиваются, липидный слой представляет собой непроходимый барьер для проникновения любых заряженных ионов – как органических, так и неорганических.
Эта относительная непроницаемость создает проблему, так как цитоплазма внутри клетки не может существовать без водорастворимых компонентов. Многие необходимые ионы – ионы натрия и кальция, хлорид, а также органические вещества, например глюкоза и другие сахара, – являются полярными и не могут преодолеть липидную мембрану. Как же им попасть внутрь? Для этого существуют специальные белки. Они усеивают двойной липидный слой, как стразы на узорчатом поясе. Эти белки работают как поры, или перевозчики, которые доставляют полярные молекулы с одной стороны мембраны на другую. Если начать подробно рассматривать различные биологические мембраны, то выясняется, что у наиболее активных структур (например, митохондрий) белков в мембранах больше всего, а у наименее активных (например, оболочках отростков нервных клеток), их, напротив, очень мало.
Чтобы возникла токсическая реакция, ядовитое вещество должно проникнуть к своей мишени. Иногда это рецептор, иногда – определенный белок или ядерная ДНК, но в целом можно сказать, что мишенью токсина является либо какое-то место внутри клетки, в пределах ее клеточной мембраны, либо сама эта мембрана (двойной липидный слой). Поэтому многие токсичные вещества, чтобы проявить свою активность, должны преодолеть мембраны, и как раз здесь на сцену выходит их растворимость. Водорастворимые вещества (и органические, и неорганические) не могут легко пройти сквозь липидные слои, если только не воспользуются белковыми каналами. Таким образом, транспорт водорастворимых веществ подвергается контролю, и содержание многих из них – например, таких неорганических ионов, как ионы натрия, хлорид, ионы калия или кальция, – поддерживается в клетке на постоянном уровне.
Данная система эволюционировала так, чтобы была возможна регуляция транспорта этих ионов, однако она не всегда работает безошибочно. Ионные каналы, точно регулирующие поступление неорганических или органических ионов в клетку, случайно могут пропускать и вредные токсичные ионы. Переносчики таких микроэлементов, как медь и цинк, не могут отличить эти необходимые для жизнедеятельности металлы от потенциально опасных, таких как кадмий, серебро или ртуть.
С токсичными жирорастворимыми веществами дело обстоит иначе. Для них липидная мембрана не является препятствием, и поэтому они могут перемещаться по организму безо всяких ограничений, словно бродяги. Хотя, согласно одному из определений, живой организм – это система, контролирующая свой внутренний состав, жирорастворимые молекулы умудряются обходить правила, регулирующие жизнедеятельность клеток.
Поскольку растворимость так важна для абсорбции и конечной судьбы молекул в организме, нам нужно ее как-то измерять. Это возвращает нас к аналогии с салатной заправкой. Если добавить в смесь (эмульсию) воды и масла некое таинственное вещество и дать смеси отстояться, чтобы масло оказалось сверху, все, что понадобится для определения растворимости, – это измерить содержание вещества в слоях воды и масла. В экспериментах по измерению степени растворимости в качестве масла используется октанол, и получившееся численное отношение называется коэффициентом распределения октанол/вода (Ков).
Если взять разные молекулы, от водорастворимых (поваренная соль) до жирорастворимых (холестерин), насколько разными будут их Ков? Оказывается, различаются они действительно очень сильно. Нередко бывает так, что вещество растворяется в воде в миллион раз лучше, чем в жире, и наоборот. Коэффициенты могут быть настолько велики, что обычно их представляют в виде логарифмической функции (Ков жирорастворимого вещества может составлять 1 000 000, или 106, то есть lg Ков = 6), а разница в растворимости между водо– и жирорастворимыми веществами может превышать 1012, так что растворимость жирорастворимых молекул в двойном липидном слое мембраны может быть более чем в триллион раз выше, чем водорастворимого вещества в том же липидном слое.
Теперь мы можем рассмотреть двойной липидный слой как химический барьер с точки зрения Ков. Водорастворимое вещество по определению является жиронерастворимым и поэтому не может пройти через мембрану. Скорость его диффузии через этот барьер будет минимальной. Без помощи белков-переносчиков поступление этого вещества в клетку практически невозможно, поэтому минимальной будет и его токсичность. И наоборот, вещество, растворимое в масле или жире, легко проходит через клеточную мембрану и поэтому обладает большим токсическим потенциалом. Вещество с большим Ков легко растворяется в липидном слое, и скорость его диффузии в клетку будет гораздо выше, чем у водорастворимых веществ.
Итак, растворимость можно назвать основной дихотомией токсикологии. Поведение практически любого токсичного вещества зависит от его растворимости в жире или воде. Растворимость влияет на такие фундаментальные процессы, как абсорбция из среды, попадание в кровь, диффузия в ткани-мишени, выведение из них, метаболизм, разрушение и полное устранение из организма. Эти функции в большей степени регулируются относительной растворимостью в воде и жире, чем размером или формой молекул. Именно с растворимости вещества и начинается дорога токсикологии.
Глава 3
Человек как животное
Все животные равны, но некоторые животные равнее других.
Джордж Оруэлл. Скотный двор
Когда мы думаем о биомедицинской лаборатории, вместе с образом ученого в белом халате в сознании сразу же возникает образ лабораторной мышки. Но несмотря на этот закрепившийся стереотип, место мышей очень скоро могут занять аквариумные рыбки рода Данио. Почему же холоднокровная рыба может быть для ученых более ценной, чем теплокровная мышь, и какую роль рыбы, так сильно отличающиеся от нас, могут играть в медицинских или токсикологических экспериментах?
Чтобы ответить на эти вопросы, в первую очередь нужно вспомнить о том, что мы, люди, – тоже животные. И у всех животных, вне зависимости от того, насколько они похожи на человека, есть множество сходных черт. Во-первых, все мы являемся гетеротрофами (потребителями органики) и способны к движению. Даже наше строение по сути своей одинаково: все мы – многоклеточные организмы, а генетический материал у нас содержится в ядре – особой и четко определенной структуре внутри клетки. На молекулярном, биохимическом, уровне процессы дыхания, пищеварения, выделения и метаболизма в целом (состоящего из катаболизма, или распада пищи на элементарные строительные «кирпичики» нашего тела, и анаболизма, или построения тканей из этих «кирпичиков») на удивление похожи у самых разных видов животных. Такое сходство создает основы для тестирования веществ на животных: если мы знаем, как тот или иной токсин действует на таких лабораторных животных, как мышь или данио, эти знания могут помочь нам понять, как то же самое вещество может подействовать на человека.
Чтобы решить, какие виды лучше всего подходят для медицинских исследований, нужно рассмотреть ряд факторов, в том числе и отношение общества к разным животным. Люди обычно склонны больше сочувствовать позвоночным животным, чем беспозвоночным. Например, до недавнего времени в США Комитет по содержанию и использованию животных (IACUC), административный орган, регулирующий проведение опытов над животными, обращал внимание в первую очередь на позвоночных, особенно на млекопитающих. Это понятно, потому что именно млекопитающие, в частности грызуны, чаще всего использовались в биомедицинских исследованиях. И дело здесь не только в традиции или частоте использования этих животных. Одна из функций IACUC – следить за тем, чтобы животным в лабораториях не причиняли излишних страданий. Но чем дальше от нас животное в эволюционной цепочке (то есть чем глубже в прошлое мы должны погрузиться, чтобы найти общего с нами предка), тем сложнее нам понять, чувствует ли оно что-то, и если да, то что.
Так как беспозвоночные животные (черви, моллюски, насекомые и т. д.) очень сильно отличаются от нас внешне (морфологически), провести воображаемую черту, отделяющую «настоящих» (позвоночных) животных от всех прочих, становится достаточно просто. Даже в нашем языке отражается не только отсутствие эмпатии, но и, наоборот, присутствие отвращения, к беспозвоночным. Мы нередко говорим про кого-то: «Он бесхребетный», используя это выражение в негативном смысле, подразумевая принципиальное отличие беспозвоночных от наших позвоночных собратьев.
Но какими бы ни были наши предрассудки, сходство между человеком и другими животными не заканчиваются с проведением черты между позвоночными и беспозвоночными. Хотя, конечно, трудно сказать, насколько боль и страдания, испытываемые животными «без лица», соответствуют тому, что может испытывать млекопитающее или другое позвоночное животное, нельзя не принимать во внимание функциональную, метаболическую и молекулярную общность наших организмов. Эта общность в области сравнительной физиологии привела к установлению так называемого принципа Крога. Август Крог – датский физиолог, лауреат Нобелевской премии 1920 г., сказал: «Для каждой проблемы (в физиологии) должно существовать такое животное или несколько видов животных, на которых ее будет проще всего изучить и решить». Принцип Крога применим ко всем животным, а не только к позвоночным.
Крог и гигантский кальмар
Примеров функциональности принципа Крога можно найти предостаточно. Строение некоторых систем у беспозвоночных животных может быть проще, чем у позвоночных, но при этом они могут обладать уникальными или более крупными структурами либо иметь свойства, не так явно проявляющиеся у позвоночных животных. Классический пример этого феномена – гигантские аксоны кальмара Loligo.
У всех животных электрические импульсы передаются от спинного мозга к мышцам по нервным волокнам. Эти пучки, во многом подобные коаксиальным кабелям, состоят из отростков (аксонов) отдельных нервных клеток, расположенных в спинном мозге, и идут к мышцам конечностей и других частей тела. Эти аксоны могут быть очень длинными (даже больше метра), но при этом очень малы в диаметре. Учитывая, что они отходят от тела клетки, имеющей в поперечнике всего лишь 10–25 мкм (10–6 м), получается, что это действительно тончайшие «провода».
Скорость движений организма отчасти зависит от скорости передачи нервных импульсов по аксонам. Чтобы повысить эту скорость, каждый «проводок» в нервном «кабеле» у позвоночных животных покрыт метаболически неактивной мембраной. У беспозвоночных же увеличение скорости передачи импульса достигается за счет увеличения диаметра самих аксонов. Оба эти видоизменения направлены на уменьшение сопротивления потоку электрических зарядов. У гигантского кальмара Loligo это увеличение диаметра (в так называемом звездчатом нерве) доведено до крайности: один аксон может быть толщиной 300–800 мкм. Иными словами, аксон – покрытый мембраной отросток одной нервной клетки – больше по крайней мере в 12 раз по сравнению с диаметром среднего нейрона спинного мозга позвоночных!
Это очень важно для физиологов, так как с таким гигантским аксоном относительно просто производить какие-либо действия. Эксперименты на этой уникальной структуре позволили физиологам начала XX в. определить механизмы передачи электрических импульсов нервными клетками. Принцип Крога отлично применим к этой системе, так как гигантский кальмар оказался действительно оптимальным организмом для изучения передачи информации по нейронам у всех животных, как позвоночных, так и беспозвоночных. Конечно, аксоны кальмара отличаются от аксонов млекопитающих, у которых есть свои механизмы, направленные на ускорение передачи. Тем не менее фундаментальные принципы функционирования аксонов остаются неизменными, и искусственное разделение животных на позвоночных и беспозвоночных не имеет здесь никакого значения.
Гипотеза аналогий
Сходство человека с другими видами животных полезно не только для подбора модельных организмов для медицинских исследований, но и для определения негативного воздействия химических веществ, попадающих в окружающую среду. Позднее мы подробнее поговорим о том, как продукты фармацевтической промышленности и средства личной гигиены попадают в среду, порой в очень сложных сочетаниях. Учитывая, что многие из этих веществ не считаются вредными для окружающей среды, а их концентрация очень низка, оценить реальный риск оказывается очень сложно.
Здесь может оказаться полезным концептуальный подход, получивший название гипотезы аналогий. Продукты фармацевтической промышленности и средства личной гигиены могут оказывать воздействие на ткани животных, сходные с воздействием на человека, если молекулярная мишень для того или иного вещества у них одинакова. В этом случае можно предположить, что данное вещество, попав в кровь животного, вызовет фармакологическую реакцию в концентрациях более низких, чем требуется для токсической реакции. Более того, если это действительно так, данные, полученные в процессе разработки лекарства, будут полезны для оценки возможного токсического воздействия на живые организмы в природе. Важно, что реакция животных на определенные лекарственные средства может быть сходной с человеческой, если у них имеются одни и те же клеточные молекулярные мишени.
Гены и генетическое разнообразие
Животные с совершенно разной морфологией могут тем не менее обладать сходством сложных функциональных структур потому, что все они имеют общее происхождение. У животных передача локомоторных сигналов от мозга к мышцам возникла в ходе эволюции лишь единожды и по сути своей осталась неизменной, или эволюционно консервативной. Конечно, существуют многочисленные видоизменения этой системы, так как позвоночные и беспозвоночные животные довольно давно разошлись на пути эволюции. Таковы, к примеру, механизмы, необходимые для увеличения скорости передачи импульса, о которых мы уже говорили. Однако фундаментальные молекулярные механизмы работы нейронов в большой степени остались такими же, какими были в тот момент, когда у первого животного в ходе эволюции возникла нейронная сеть.
Тот же самый принцип применим и ко многим метаболическим ферментам – белкам, которые участвуют в получении клеткой энергии в форме аденозинтрифосфорной кислоты (АТФ). На ранних стадиях метаболизма сахаров, ведущего к получению энергии, активация ключевого белка-фермента (А-киназы) регулируется белковой субъединицей, дезактивирующей фермент при присоединении к нему. Присоединением этой субъединицы к А-киназе, в свою очередь, управляет производное АТФ, передающее сигналы внутри клетки, циклический аденозинмонофосфат (цАМФ). Оно может связываться с регуляторной субъединицей, в результате чего происходит ее отделение от А-киназы и фермент начинает функционировать. Этот метаболический уровень контроля настолько консервативен, что регуляторные субъединицы одного животного могут связываться с А-киназой многих других живых организмов, даже очень далеко отстоящих от него эволюционно. Метаболизм сахаров, или гликолиз, – это основной путь биохимических преобразований для всех животных. Именно поэтому участвующие в нем белки так консервативны. И поскольку человек – тоже животное, у него имеются те же самые ферменты, и регуляторные субъединицы других животных легко присоединяются к человеческой А-киназе.
Эти примеры иллюстрируют тот факт, что на молекулярном уровне мы с вами являемся такими же животными, как и все остальные. Это очень важно для токсикологии, так как воздействие химических веществ на ткани-мишени очень часто остается неизменным для большого разнообразия видов, включая человека.
Естественный отбор и дифференциальная восприимчивость
Консервативность молекулярной структуры и функций – один из основополагающих принципов биологии, однако не менее фундаментальной является и идея об индивидуальном разнообразии. Отдельные особи одного и того же вида животных могут казаться нам совершенно одинаковыми, однако на самом деле очень сильно различаются между собой с точки зрения генетики, биохимии и физиологии, морфологии и поведения. Этой изменчивостью управляет естественный отбор. Основные его принципы следующие:
1. Животные производят на свет больше потомства, чем может выжить при имеющихся ресурсах.
2. Потомки одного животного отличаются друг от друга морфологически и биохимически.
3. От изменчивости признаков зависит, кто из потомков выживет и сможет успешно размножаться, тем самым передавая свои признаки последующим поколениям.
Таким образом, несмотря на то что многие гены и кодируемые ими белки сохраняются в ходе эволюции неизменными, эта консервативность сосуществует с постоянным перемешиванием генетического материала в каждом следующем поколении потомков.
Индивидуальные различия между особями одного вида очень важны для токсикологии по многим причинам. Во-первых, именно они в большой степени определяют кривизну графика зависимости реакции от дозы. От генетической и морфологической изменчивости особей, используемых в экспериментах для построения этой кривой, зависит их способность реагировать на токсическое воздействие. У животных с коротким сроком жизни, которые в природе обычно многочисленны – например, насекомых – индивидуальные различия в реакции могут приводить к развитию популяций, устойчивых к пестицидам. Эти популяции могут возникать очень быстро, так как особо восприимчивые к пестицидам особи гибнут, и возможность размножаться получают только те, кто обладает врожденной устойчивостью. Таким образом, кривая зависимости реакции от дозы меняется со временем, но эти изменения объясняются биологической реакцией популяции на воздействие вещества.
Повсеместное распространение изменчивости в биологических системах также влияет на возможность использования различных животных в диагностике заболеваний, так как чем дальше друг от друга находятся виды эволюционно, тем сильнее различаются их молекулярные особенности. Это создает проблемы при использовании животных в медицинских экспериментах. Например, общий предок двух наиболее распространенных лабораторных животных, мышей и крыс, существовал примерно 23 млн лет назад, а общий предок грызунов и человека – около 100 млн лет назад. За это долгое время эволюция очень сильно развела животных, сделав их совершенно разными не только по внешним признакам или морфологии, но и по реакции на различные химические вещества. Например, при тестировании 392 канцерогенных веществ на мышах и крысах оказалось, что 76 % крысиных канцерогенов являются канцерогенными и для мышей, а 70 % мышиных – для крыс.
Поэтому, несмотря на то что по многим фундаментальным физиологическим и молекулярным процессам человек ничем не отличается от множества других видов животных, что и позволяет использовать их в токсикологических тестах, естественный отбор может действовать таким образом, что токсикологический ответ лабораторного животного может оказаться совершенно иным, чем у человека. Учитывая, что эволюционная дистанция между человеком и грызунами больше, чем между крысой и мышью, можно с уверенностью сказать, что веществ, одновременно канцерогенных и для человека, и для грызунов, будет не больше, чем упомянутые выше 70 %. Это не значит, что лабораторные грызуны не имеют ценности для науки; однако это подчеркивает тот факт, что на всех животных, включая человека, одновременно воздействуют как консервативность молекулярной структуры, так и изменчивость естественного отбора.
Человек – это животное, и наше общее с другими видами животных молекулярное происхождение создает основу для использования лабораторных животных в медицинских исследованиях. В зависимости от исследуемой системы модельные организмы могут быть похожи на человека (это служит аргументом для использования приматов в исследованиях инфекционных болезней) или быть эволюционно очень далекими от него (как в случае с гигантским кальмаром Loligo, которого используют для изучения работы нервных клеток). Возможно, лабораторные мыши и сдадут свои позиции как главный объект исследований, но скорее всего, они просто продолжат сосуществовать в лабораториях с другими модельными организмами. Ведь в конце концов внешнее сходство или различие может быть обманчивым, а главную роль играет биохимическая близость организмов.
Глава 4
Химические путешествия: абсорбция
Тот, кто где-то оказался, обязательно должен был начать оттуда, где был.
Роберт Льюис Стивенсон
Чтобы токсичное вещество стало вредным, для начала ему нужно проделать путешествие из среды к конкретной мишени в организме. Большая часть этого путешествия осуществляется на первый взгляд простым путем диффузии: молекулы мигрируют прочь от источника своего происхождения. Примеры диффузии можно найти повсюду: это и соль, растворяющаяся в воде, и дым, распространяющийся в атмосфере, из заводской трубы. Но диффузия становится более сложной, если молекулы переходят из одной части окружающей среды в другую. Например, когда молекулы переходят из воды в воздух, скорость диффузии зависит как от их собственных свойств, так и от свойств воды и воздуха. Более того, расстояние от источника, которое могут преодолеть молекулы, и размеры поверхности, с которой они распространяются, также оказывают влияние на степень диффузии.
Чтобы токсичная молекула вызвала реакцию в ткани-мишени, токсичное вещество нередко преодолевает несколько различных сред. Загрязняющее вещество, присутствующее в воздухе, может проникать из него в водный слой (влажная среда в воздухе), затем – в липидный слой (мембрана, покрывающая каждую клетку) и наконец – снова в водную среду внутри клетки.
Чтобы попасть в кровь, вещество должно повторить все эти ступени, перемещаясь из внутренней водной среды клетки через липидную мембрану и обратно в водную среду крови.
Вне зависимости от того, каким образом токсины попадают в организм животного – через пищеварение, дыхание или кожу, – все химико-биологические реакции начинаются с перемещения химического вещества через слой эпителия. Кожа – первый приходящий в голову пример эпителиальной ткани, потому что она всегда у нас перед глазами. Но эпителий также имеется в легких и пищеварительном тракте. Эти три эпителиальных слоя не совсем одинаковы, поскольку у них разные функции.
Кожа
Кожа млекопитающих, среди прочего, служит барьером между внешней средой и внутренним «океаном» крови. Кожа плотно натянута на все наше тело, имеется лишь небольшое число складок, которые незначительно увеличивают общую площадь ее поверхности. Однако по сравнению с поверхностью внутренних органов, например печени, поверхность кожи очень велика.
Внешний слой кожи состоит из отмерших клеток. В находящемся под ним слое дермы клетки постоянно делятся, производя новые клетки, которые умирают, обезвоживаются и кератинизируются. Процесс кератинизации – это накопление кератина в эпителиальном клеточном слое. Кератин – это волокнистый белок, который можно обнаружить не только в наружном слое кожи, но и в ногтях, копытах и даже роге носорога. Пучки кератиновых волокон очень прочны и, что не менее важно, нерастворимы в воде. Поэтому кератиновый слой вашей кожи можно рассматривать в первую очередь как водонепроницаемый барьер между вами и окружающим миром.
В слое мертвых клеток нет живых белков, поэтому через кожу не может происходить активный транспорт веществ. А как же жирорастворимые вещества? В мертвой клетке сохраняются липиды, образовавшиеся при ее жизни, поэтому жирорастворимые молекулы могут проникать в слой мертвых клеток кожи. В ходе эволюции кожа не развивалась специально как абсорбирующая поверхность, но так как защитный кожный барьер состоит из мертвых клеток, он по своей природе остается способным к абсорбции жирорастворимых веществ.
Способность кожи абсорбировать жирорастворимые вещества – это и наше благословение, и наше проклятие. Например, способность кожи всасывать небольшие липофильные молекулы используется в фармакологии: с помощью адгезивных пластырей можно доставлять в организм такие вещества, как скополамин, средство от морской болезни или никотин. К несчастью, урушиол, активный компонент, содержащийся в ядовитом плюще и сумахе, также может абсорбироваться кожей.
Легкие
Внутренняя поверхность легких значительно отличается от внешнего слоя кожи, так как все клетки легких вполне живые, однако имеется одно очень важное общее свойство. Между воздушными мешочками – альвеолами – и внутренней средой клеток легких также не происходит транспорта веществ с помощью белков. Но на этом сходство двух эпителиальных слоев практически заканчивается.
В легких, заполненных воздухом, происходит диффузия кислорода и углекислого газа. У земноводных, например лягушек, легкие похожи на гроздь винограда, состоящую из нескольких очень крупных воздушных мешков с относительно небольшой общей площадью поверхности и относительно большим расстоянием для диффузии от центра каждого мешочка до крови. У млекопитающих в легких того же объема (у крупной лягушки-быка объем легких приблизительно такой же, как у небольшой крысы) альвеолы гораздо мельче и более многочисленные. Кроме того, у крысы гораздо выше уровень метаболизма, для чего требуется более быстрое поступление кислорода в кровь. Отчасти это достигается уменьшением расстояния, на котором осуществляется диффузия (так как альвеолы значительно мельче) и увеличением площади поверхности. Поэтому у крыс кислород поступает из легких в кровь, а углекислый газ – в обратном направлении, быстрее, чем у земноводных.
Однако через эпителий легких проникают не только такие простые газы, как кислород и углекислый газ. Может происходить также абсорбция различных паров. Пар – это газообразная фаза вещества, которое улетучивается с поверхности жидкости (представьте себе пары, поднимающиеся от капельки духов), однако не все химические вещества в одинаковой степени способны производить пары. Например, водорастворимые вещества не улетучиваются из раствора, а упорно в нем остаются. И даже если сама вода полностью испарится, эти вещества, как правило, не попадают в атмосферу, а остаются в виде твердого осадка, часто в форме соли. Так что в легких нет белков-переносчиков водорастворимых веществ, и эти вещества не обнаруживаются в легких в каких-либо значительных концентрациях.
А что же происходит с более летучими органическими соединениями? Эти вещества могут абсорбироваться в различной степени, и определяющим фактором здесь служит коэффициент распределения кровь/газ. Чтобы понять, как абсорбция зависит от этого коэффициента, представьте себе пары воздуха, находящиеся в коктейльном шейкере вместе с небольшим количеством воды. При взбалтывании коктейля пар частично перейдет в воду, а в основном останется в воздухе внутри шейкера. В этом случае у веществ, оставшихся в газовой среде шейкера, будет низкий коэффициент распределения кровь/газ, а у веществ, которые преимущественно перейдут в воду, этот коэффициент будет высоким. Это сильно влияет на способность к абсорбции, так как низкое значение коэффициента означает и низкую абсорбцию, а при повышенном значении коэффициента распределения абсорбция через легочный эпителий будет гораздо выше.
Жабры рыб – очень интересный вариант дыхательного органа. В отличие от легких, жабры контактируют с водой, поглощая растворенный в ней кислород и выделяя углекислый газ из крови непосредственно в воду. Кроме того, прямой контакт жабр с водой позволяет осуществлять транспорт водорастворимых веществ. Поэтому жабры рыб, в отличие от легких млекопитающих, содержат белки, ответственные за этот транспорт, в частности за перенос таких неорганических ионов, как ионы натрия, кальция и калия. Жабры являются не просто дыхательным органом, но и ионорегуляторной структурой, подобной почкам млекопитающих, функция которой состоит в поддержании нужных концентраций необходимых ионов в крови.
Пищеварительная система
Мы уже увидели, что перенос химических веществ через кожу минимален, а через легкие – ограничен небольшим числом высокоспецифичных классов химических веществ. Однако транспорт через эпителиальный слой пищеварительного тракта происходит быстро и неукротимо. Главная функция гастроинтестинального эпителия – абсорбция пищи на молекулярном уровне. Поэтому кишечная эпителиальная мембрана заполнена белками, переносящими водорастворимые вещества из пищеварительной системы в кровь, откуда они, в свою очередь, поступают в печень.
Можно предположить, что транспорт липидов через кишечный эпителий будет простым, но на самом деле это довольно сложный процесс. При употреблении в пищу различные липиды – жиры и масла – обычно не остаются в виде отдельных химических веществ, а смешиваются в желудке и кишечнике, образуя крупные глобулы. Эти большие сгустки жира для дальнейшего переваривания необходимо разбить на мелкие капли. Этот процесс носит название эмульгирования. Эмульгирование происходит при помощи солей и кислот желчи, которые заставляют крупные глобулы распадаться на мелкие, называемые мицеллами. Эти мелкие частицы жиров и масел могут перемещаться через эпителиальную выстилку пищеварительного тракта, в конечном итоге попадая в кровь.
Транспортная магистраль, по которой молекулы питательных веществ доставляются из кишечника к другим органам и тканям, к сожалению, так же хорошо абсорбирует токсичные вещества. Белки, предназначенные специально для переноса водорастворимых молекул пищи, «по ошибке» могут переносить через мембрану водорастворимые токсины. Жирорастворимые вещества обычно встраиваются в кишечнике в липидные глобулы и мицеллы. Но, помимо полезных жиров и масел, там могут оказаться и липофильные яды, проникающие вместе с мицеллами в кровь.
Что происходит в крови
Когда химическое вещество попадает в организм, оно перемещается по кровеносным сосудам, как гондола по каналам Венеции, к своему пункту назначения – ткани-мишени. Как именно химические вещества путешествуют по кровеносной системе, зависит от ряда факторов, в том числе их растворимости. Водорастворимые вещества растворяются в плазме крови и перемещаются вместе с ее потоком, как правило, совершенно беспрепятственно. Жирорастворимые вещества связываются с белками, и в крови возникает равновесие между небольшим количеством свободных веществ и гораздо большим количеством связанных. Это очень важно, так как свободная форма является биологически активной и может диффундировать из крови к определенным рецепторам. Но если свободно находящееся в крови вещество попадает в межклеточную жидкость и далее к своей клетке-мишени, то равновесие нарушается, и часть молекул, которые были связаны с белками, переходят в свободную форму. Таким образом биологически активные вещества постепенно поступают в кровь, откуда могут транспортироваться через близлежащий эпителий капилляров.
Попадая в организм через кожу, легкие или пищеварительную систему, токсичное вещество нередко должно преодолеть долгий путь по кровеносным сосудам, прежде чем доберется до своей ткани-мишени. Способ его попадания в кровь из эпителиальных клеток, где произошла абсорбция, идентичен процессу попадания в сам эпителиальный слой. Для жирорастворимых веществ попадание в кровь не составляет проблемы – клетки стенок сосуда не задерживают их. В свою очередь, водорастворимые вещества могут использовать белки-переносчики для проникновения через клеточные мембраны.
Способность вещества мигрировать из тканей в кровь определяется не только его химическими свойствами, но и способностью кровеносных сосудов как содействовать, так и препятствовать подобному обмену. Так, например, капилляры головного мозга расположены так тесно, что никакой транспорт не может осуществляться без участия клеток этой капиллярной сети. Поэтому водорастворимые вещества могут проникать в мозг только через клетки, составляющие гематоэнцефалический барьер (барьер между кровью и мозгом). В печени же капиллярная сеть не такая густая, в ней имеются лакуны, позволяющие большим количествам жидкости проникать в ткань печени и обратно. Эта система обеспечивает легкое попадание в кровь водорастворимых питательных веществ (например, сахаров), но по тому же пути могут перемещаться и водорастворимые токсины.
После того как вещество попало в кровь, время его нахождения в ней зависит от типа растворимости. Водорастворимые вещества остаются в плазме крови, пока не смогут выйти из сосуда через клеточные каналы или крупные лакуны, например, в печени и почках. Перемещение водорастворимых веществ по кровеносным сосудам жестко контролируется организмом. Жирорастворимые вещества, напротив, могут свободно проникать в кровеносные сосуды и выходить из них.
На клеточном уровне в нашем организме происходит борьба между контролем и хаосом, и неконтролируемые липофильные вещества постоянно сопротивляются попыткам регуляции внутренней среды. К счастью, жирорастворимые вещества в крови обуздываются, присоединяясь к крупным заряженным белкам. В результате получаются несущие заряд супермолекулы – протеино-токсиновые конъюгаты, которые всегда полярны, поэтому определенным образом расположены в крови. Для многих токсичных веществ (а также неполярных нетоксичных соединений, например половых гормонов) в крови существует равновесие между конъюгатами и небольшим числом свободных неполярных молекул. Когда молекула отделяется от белка плазмы, она продолжает вести свою кочевую жизнь и легко проходит сквозь клеточную мембрану капилляра, проникая таким образом к рецепторам, где и наносит свой удар.
Секвестрация
Вещество из крови может попадать на клеточные мембраны и связываться с молекулами-мишенями на поверхности клетки или же проникать в клетку и связываться с мишенями внутри нее. Если вещество проникает внутрь клетки, далее с ним могут происходить различные процессы, приводящие к разным последствиям, помимо нанесения очевидного ущерба данной клетке. Некоторые вещества подвергаются секвестрации, то есть накоплению в организме в неактивной форме, оставаясь относительно безвредными. Например, водорастворимые ионы металлов могут встраиваться в кости, а липофильные вещества – в жировые отложения.
Прекрасный пример секвестрации – таинственная смерть Наполеона Бонапарта в 1821 г. В своем завещании он пишет: «Я умираю преждевременно, убитый английской олигархией и ее палачом; английский народ не замедлит отомстить за меня». Эта фраза наводила на мысль, что великий полководец был отравлен. К счастью, слуги сохранили локоны его волос, и когда их проверили на содержание мышьяка, выяснилось, что оно в 100 раз превышает норму. Возможно, причина его смерти была не в этом, однако химический анализ дал неопровержимые доказательства того, что в последний период своей жизни Наполеон действительно подвергался воздействию мышьяка.
Кстати, в истории Наполеона обнаружился неожиданный поворот: современные исследования показали, что, вероятно, он умер все же не от отравления мышьяком. Ученые считают, что причиной его смерти был рак желудка и язвенная болезнь. Интересно, что на обоях в доме на острове Святой Елены, где жил Наполеон в изгнании, имелся зеленый рисунок. В те времена зеленую краску для обоев делали из арсенита меди. При увлажнении (которое было весьма вероятно, так как на острове сыро) и под воздействием плесени эта соль мышьяковистой кислоты способна превращаться в газ триметиларсин. Скорее всего, именно этот газ, а не яд убийцы, был источником мышьяка, найденного в волосах Наполеона.
Накапливающиеся в тканях в результате секвестрации вещества могут оставаться в них на протяжении всей жизни, выводиться из организма в инертной форме (как мышьяк в волосах Наполеона) или возвращаться обратно в кровь. Вне зависимости от способа перемещения веществ в организме и уровня их токсичности, все они подчиняются одним и тем же правилам диффузии и путешествуют к своим тканям-мишеням в соответствии с этими правилами.
Глава 5
Защита организма
Если бы открылось свободное пространство, о, как бы он полетел! – он бы так полетел, что вскоре ты, наверное, услышал бы великолепные удары его кулака в твою дверь. Но вместо этого, погруженный в неустанные – и такие напрасные! – труды, он все еще протискивается сквозь парадные залы самого внутреннего из дворцов, – и никогда ему их не преодолеть, а если бы ему это и удалось, то ничего еще не было бы достигнуто, потому что пришлось бы пробиваться вниз по лестницам, а если бы ему и это удалось, то и тогда ничего еще не было бы достигнуто, потому что пришлось бы еще пересекать дворы, а после дворов – второй, внешний дворец, и снова – лестницы и дворы, и снова – еще один – внешний дворец, и так далее в течение тысячелетий; а если бы он выбрался, наконец, за самые последние ворота – но никогда, никогда не может это произойти! – перед ним еще лежала бы вся столица – центр земли, до отказа заполненный стекающими туда со всех сторон осадками.